On a partially simple ribbon fusion of links by
 Kengo KISHIMOTO and Tetsuo SHIBUYA

Department of General Education, Faculty of Engineering
(Manuscript received Sep 30, 2013)

Abstract

In recent papers [2, 3], Tsukamoto and the authors defined a transformation of links, called a simple ribbon fusion. In this paper, we define another transformation called a partially simple ribbon fusion and study its several properties as well as the difference between the two transformations. By definition, a simple ribbon fusion consists of finitely many elementary simple ribbon fusions. We investigate the relation between a partially simple ribbon fusion and an elementary simple ribbon fusion.

keywords; Simple ribbon fusion

1 Introduction.

All links are assumed to be ordered and oriented, and they will be considered up to ambient isotopy in the oriented 3 -sphere S^{3}.

In $[2,3]$, Tsukamoto and the authors define a transformation called a simple ribbon fusion, which is a generalization of a simple ribbon move (cf. [4]), and study its several properties. A link L is called the link which can be obtained from a link ℓ by a simple ribbon fusion if there are disjoint unions of non-singular disks $\mathcal{D}=\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{m}$ and bands $\mathcal{B}=\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{m}$ such that $L=(\ell \cup \partial(\mathcal{D} \cup \mathcal{B}))-\operatorname{int}(\mathcal{B} \cap \ell)$ and that they satisfy the following, where $\mathcal{D}^{k}=D_{1}^{k} \cup \cdots \cup D_{m_{k}}^{k}$ and $\mathcal{B}^{k}=B_{1}^{k} \cup \cdots \cup B_{m_{k}}^{k}$.
(1) $\ell \cap \mathcal{D}=\emptyset$.
(2) For each k and $i, B_{i}^{k} \cap \ell=\partial B_{i}^{k} \cap \ell=\{$ a single arc $\}$ and $B_{i}^{k} \cap \partial \mathcal{D}=\partial B_{i}^{k} \cap \partial D_{i}^{k}=$ \{a single arc\}.
(3) For each k and $i, B_{i}^{k} \cap \operatorname{int} \mathcal{D}=B_{i}^{k} \cap \operatorname{int} D_{i+1}^{k}=\mathcal{B} \cap \operatorname{int} D_{i+1}^{k}=\{$ an arc of ribbon type $\}$, where we consider the lower index modulo m_{k}.

When $m=1$, we call the simple ribbon fusion an elementary simple ribbon fusion [2].
In this paper, we introduce another transformation called a partially simple ribbon fusion and investigate the difference of an elementary simple ribbon fusion and a partially simple ribbon fusion. We also study some properties of a partially simple ribbon fusion. A link L is called the link which can be obtained from a link ℓ by a partially simple ribbon fusion if there are disjoint unions of non-singular disks $\mathcal{D}=\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{m}$ and bands $\mathcal{B}=\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{m}$ such that $L=(\ell \cup \partial(\mathcal{D} \cup \mathcal{B}))-\operatorname{int}(\mathcal{B} \cap \ell)$ and that they satisfy the following, where $\mathcal{D}^{k}=D_{1}^{k} \cup \cdots \cup D_{m_{k}}^{k}$ and $\mathcal{B}^{k}=B_{1}^{k} \cup \cdots \cup B_{m_{k}}^{k}$.
(1) The link $L_{k}=\left(\ell \cup \partial\left(\mathcal{D}^{k} \cup \mathcal{B}^{k}\right)\right)-\operatorname{int}\left(\mathcal{B}^{k} \cap \ell\right)$ can be obtained from ℓ by a simple ribbon fusion with respect to $\mathcal{D}^{k} \cup \mathcal{B}^{k}$ for each k.
(2) $\mathcal{B}^{k} \cap \mathcal{D}^{l}=\emptyset$ for each $k, l(1 \leq k<l \leq m)$.

We note that if the condition (2) is replaced with the condition that $\mathcal{B}^{k} \cap \mathcal{D}^{l}=\emptyset$ for each k, l $(k \neq l)$, then L is obtained from ℓ by a simple ribbon fusion. Hence if L can be obtained from ℓ by a simple ribbon fusion, then L can be obtained from ℓ by a partially simple ribbon fusion. However, we show that the converse does not hold.

Theorem 1. There is a pair of links ℓ and L such that L can be obtained from ℓ by a partially simple ribbon fusion but L can not be obtained from ℓ by a simple ribbon fusion.

We reveal a relation between a partially simple ribbon fusion and an elementary simple ribbon fusion as follows.

Theorem 2. A link L can be obtained from a link ℓ by a partially simple ribbon fusion if and only if there is a sequence $L_{0}(=\ell), L_{1}, \ldots, L_{m}(=L)$ of links such that L_{k} can be obtained from L_{k-1} by an elementary simple ribbon fusion for $k=1, \ldots, m$.

In [1], Goldberg introduced the disconnectivity number of a link L, denoted by $\nu(L)$, which is the maximal number of connected components of all the Seifert surfaces for L. For each integer $r(1 \leq r \leq \nu(L))$, the r-th genus of L, denoted by $g_{r}(L)$, is the minimal number of genera of all the Seifert surfaces for L with r connected components.

As an extension of Theorem 1.1 in [2], Theorem 2 implies the following.
Corollary 3. Let L be a link obtained from a link ℓ by a partially simple ribbon fusion. Then we have that $\nu(L) \leq \nu(\ell)$ and that $g_{r}(L) \geq g_{r}(\ell)$ for each integer $r(1 \leq r \leq \nu(L))$. Moreover, if $\nu(L)=\nu(\ell)(=p)$ and $g_{p}(L)=g_{p}(\ell)$, then L is ambient isotopic to ℓ.

2 Proof of Theorems.

Let L be a link obtained from a link ℓ by a simple ribbon fusion with respect to $\mathcal{D}=\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{m}$ and $\mathcal{B}=\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{m}$. We say that $D_{i}^{k} \cup B_{i}^{k}(\subset \mathcal{D} \cup \mathcal{B})$ is trivial, if there is a non-singular disk Δ_{i}^{k} with $\partial \Delta_{i}^{k}=\partial D_{i}^{k}$ such that int $\Delta_{i}^{k} \cap(L \cup \mathcal{B})=\emptyset$. A simple ribbon fusion is said to be irreducible if $D_{i}^{k} \cup B_{i}^{k}$ is not trivial for any i, k.

Lemma 4. Let L be a non-prime and non-split link. If L is obtained from a link ℓ by a simple ribbon fusion with respect to $\mathcal{D} \cup \mathcal{B}$, then there is no non-trivial decomposition sphere Σ of L with $\Sigma \cap \ell=\emptyset$.

Proof. By definition, if $D_{i}^{k} \cup B_{i}^{k}(\subset \mathcal{D} \cup \mathcal{B})$ is trivial for some k and i, then L is ambient isotopic to the link $\left(L-\partial\left(\mathcal{D}^{k} \cup \mathcal{B}^{k}\right)\right) \cup\left(\mathcal{B}^{k} \cap \ell\right)$. This implies that L can be obtained from ℓ by a simple ribbon fusion with respect to $\left(\mathcal{D}-\mathcal{D}^{k}\right) \cup\left(\mathcal{B}-\mathcal{B}^{k}\right)$. Thus we may assume that a simple ribbon fusion is irreducible.

Suppose that there is a non-trivial decomposition sphere Σ of L with $\Sigma \cap \ell=\emptyset$. Since $\Sigma \cap \ell=\emptyset$, we can deform Σ by isotopy so that $\Sigma \cap \mathcal{B}=\emptyset$. Then there is a disk D_{i}^{k} of \mathcal{D} such that $\Sigma \cap L=\Sigma \cap\left(\partial D_{i}^{k}-\partial B_{i}^{k}\right)$ which consists of two points. Therefore $\Gamma(=\Sigma \cap \mathcal{D})$ consists of a simple arc, say γ, proper on D_{i}^{k} and some simple loops, where we note that $\gamma \cap \mathcal{B}=\emptyset$.

Suppose that Γ contains a simple loop c. Let $D_{i}^{k}(c)$ be the disk on D_{i}^{k} with $\partial D_{i}^{k}(c)=c$. First we consider the case where $D_{i}^{k}(c)$ does not contain $\alpha_{i}^{k}=\operatorname{int} D_{i}^{k} \cap \mathcal{B}$. Then we obtain two 2 -spheres one of which is a non-trivial decomposition sphere Σ^{\prime} of L with $\Sigma^{\prime} \cap \ell=\emptyset$ by attaching $D_{i}^{k}(c)$ to Σ, namely we replace a neighborhood of c on Σ with two parallel copies of $D_{i}^{k}(c)$. By applying the above transformation at an innermost loop on $D_{i}^{k}(c)$ in turn as illustrated in Figure 1, we can take a non-trivial decomposition sphere, denoted by Σ again, of L with $\Sigma \cap \ell=\emptyset$ such that Γ does not contain such a loop c.

Next we consider the case where $D_{i}^{k}(c)$ contains α_{i}^{k}. We may assume that c is innermost on Σ with respect to γ, namely for the disk, denoted by Σ_{c} on Σ bounded by c, int $\Sigma_{c} \cap \mathcal{D}=\emptyset$.

Figure 1:

Then $E=\left(D_{i}^{k}-D_{i}^{k}(c)\right) \cup \Sigma_{c}$ is a non-singular disk such that int $E \cap(L \cup \mathcal{B})=\emptyset$ and thus $D_{i}^{k} \cup B_{i}^{k}$ is trivial, which contradicts to the irreducibility of the simple ribbon fusion. Hence we obtain that $\Gamma=\gamma$.

Since γ is proper on D_{i}^{k} and $\Sigma \cap \mathcal{B}=\emptyset$, we have $D_{i}^{k}-\gamma$ consists of two disks, say $D_{i 0}^{k}$ and $D_{i 1}^{k}$, where $\partial D_{i 1}^{k} \cap \partial B_{i}^{k} \neq \emptyset$. First we consider the case where α_{i}^{k} is contained in $D_{i 1}^{k}$. Then Σ decomposes L into two links such that one of which contains $\partial D_{i 0}^{k}$ as a component. This contradicts to that L is non-split or that Σ is a non-trivial decomposition sphere of L.

Next we consider the case where α_{i}^{k} is contained in $D_{i 0}^{k}$. We consider a simple loop κ intersecting each α_{i}^{k} at a point on $\mathcal{D}^{k} \cup \mathcal{B}^{k}$, which is one component of an attendant link with respect to $\mathcal{D} \cup \mathcal{B}$ (see, $[2,3]$). Since $\Sigma \cap(\mathcal{B} \cup \mathcal{D})=\gamma$, we have that $\Sigma \cap \kappa=\gamma \cap \kappa$ which is a point. However, since κ is a loop, $\Sigma \cap \kappa$ consists of even points, which is a contradiction.

Proof of Theorem 1. Let L be the link as illustrated in Figure 2. Then L can be obtained from the split link ℓ consisting of the trivial knot and the right-handed trefoil knot by a partially simple ribbon fusion with respect to $\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup\left(D_{1} \cup D_{2} \cup D_{3}\right)$. We denote by K_{1} and K_{2} the components of L, and by $K_{1} \circ K_{2}$ the split link consisting of K_{1} and K_{2}.

Figure 2:

First we show that L is non-split. We have that span $V(L)=18$ and $\operatorname{span} V\left(K_{1} \circ K_{2}\right)=16$, where span $V(X)$ is the difference between the maximum degree and the minimum degree of the

Jones polynomial of X. This implies that L is not ambient isotopic to $K_{1} \circ K_{2}$, namely L is non-split.

Next we show that L is non-prime. Let Σ be the decomposition sphere of L which satisfies that $\Sigma \cap \ell=\emptyset$ as illustrated in Figure 2. Since span $V\left(K_{1}\right)=6$ and $\operatorname{span} V\left(K_{2}\right)=9$, namely K_{1} and K_{2} are non-trivial, L is non-prime and thus Σ is non-trivial. Hence L can not be obtained from ℓ by a simple ribbon fusion by Lemma 4 .

To prove Theorem 2, we give the following lemma.
Lemma 5. [2, Lemma 4.7] Let L be a link obtained from a link ℓ by a simple ribbon fusion. Then there is a sequence $L_{0}(=\ell), L_{1}, \ldots, L_{m}(=L)$ of links such that L_{k} can be obtained from L_{k-1} by an elementary simple ribbon fusion for $k=1, \ldots, m$.

Proof of Theorem 2. Since a partially simple ribbon fusion consists of finitely many simple ribbon fusions, we obtain the necessity by Lemma 5 .

Conversely, suppose that there is a sequence $L_{0}(=\ell), L_{1}, \ldots, L_{m}(=L)$ of links such that L_{k} can be obtained from L_{k-1} by an elementary simple ribbon fusion with respect to $\mathcal{D}^{k} \cup \mathcal{B}^{k}$ for $k=1, \ldots, m$. Let $\mathcal{D}=\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{m}$ and $\mathcal{B}=\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{m}$. To prove that $L\left(=L_{m}\right)$ can be obtained from $\ell\left(=L_{0}\right)$ by a partially simple ribbon fusion, it is sufficient to do that we can deform $\mathcal{D} \cup \mathcal{B}$ by isotopy so that it satisfies the following claims.
(1) For each k and $i, B_{i}^{k} \cap \ell=\partial B_{i}^{k} \cap \ell=\{$ a single arc $\}$.
(2) \mathcal{B} is a disjoint union of bands.
(3) For each $k,\left(\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{k-1}\right) \cap \mathcal{D}^{k}=\emptyset$.
(4) \mathcal{D} is a disjoint union of disks.
(1) Suppose that $B_{i}^{k} \cap \ell=\emptyset$ and $B_{q}^{p} \cap \ell=\partial B_{q}^{p} \cap \ell=\{$ a single arc $\}$ for each $p<k$ and q. We deform B_{i}^{k} along $\partial\left(\left(\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{k-1}\right) \cup\left(\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{k-1}\right)\right)$ by isotopy so that $B_{i}^{k} \cap \ell=$ $\partial B_{i}^{k} \cap \ell=\{$ a single arc $\}$ as illustrated in Figure 3. By repeating the deformation, we obtain that $B_{i}^{k} \cap \ell=\partial B_{i}^{k} \cap \ell=\{$ a single arc $\}$ for each k and i.

Figure 3:
(2) Suppose that $\mathcal{B}^{p} \cap \mathcal{B}^{k} \neq \emptyset$ for $p<k$. By thinning \mathcal{B}^{k} enough, we may assume that $\mathcal{B}^{p} \cap \mathcal{B}^{k}$ consists of arcs in int \mathcal{B}^{p}. There are two bands B_{q}^{p} of \mathcal{B}^{p} and B_{i}^{k} of \mathcal{B}^{k} such that $B_{i}^{k} \cap B_{q}^{p} \neq \emptyset$. We deform B_{i}^{k} along B_{q}^{p} by isotopy so that $B_{i}^{k} \cap B_{q}^{p}=\emptyset$ as illustrated in Figure 4. By repeating the deformation, we obtain that \mathcal{B} is a disjoint union of bands.

Figure 4:
(3) Suppose that $\mathcal{B}^{p} \cap \mathcal{D}^{k} \neq \emptyset$ for $p<k$. Then there is a band B_{q}^{p} of \mathcal{B}^{p} such that $B_{q}^{p} \cap \mathcal{D}^{k} \neq \emptyset$. Since $L_{k-1} \cap \mathcal{D}^{k}=\emptyset$, we may assume that $B_{q}^{p} \cap \mathcal{D}^{k}$ consists of arcs in B_{q}^{p} each of which connects ∂D_{q}^{p} and ℓ, where we note that $\#\left(\left(D_{q}^{p} \cap \mathcal{D}^{k}\right) \cap \alpha_{j-1}\right)=\#\left(B_{q}^{p} \cap \mathcal{D}^{k}\right)$. On the other hand, since any loop of $D_{q}^{p} \cap \mathcal{D}^{k}$ bounds a disk in \mathcal{D}^{k}, there is no loop γ of $D_{q}^{p} \cap \mathcal{D}^{k}$ with $\operatorname{lk}\left(\gamma, \alpha_{q}^{p}\right)= \pm 1$. Then there exists an arc of $D_{q}^{p} \cap \mathcal{D}^{k}$ such that its subarc bounds a disk δ on D_{q}^{p} with a proper subarc of α_{q}^{p} as illustrated in Figure 5. Then we may assume that $\delta \cap\left(D_{q}^{p} \cap \mathcal{D}^{k}\right)=\emptyset$.

Figure 5: Pre-images of $\mathcal{D}^{k} \cap D_{q}^{p}$ and δ
If $\delta \cap\left(D_{q}^{p} \cap \mathcal{B}^{k}\right) \neq \emptyset$, that is, there exists an arc β of $D_{q}^{p} \cap \mathcal{B}^{k}$ which is contained in δ, then we deform $\mathcal{D}^{k} \cup \mathcal{B}^{k}$ along δ by isotopy as illustrated in Figure 6. We note that if $\delta \cap\left(D_{q}^{p} \cap \mathcal{B}^{k}\right)=\emptyset$, then we deform \mathcal{D}^{k} only. By repeating the deformation, we obtain that $\left(\mathcal{B}^{1} \cup \cdots \cup \mathcal{B}^{k-1}\right) \cap \mathcal{D}^{k}=\emptyset$ for each k.
(4) Suppose that $\left(\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{k-1}\right) \cap \mathcal{D}^{k} \neq \emptyset$ for some k. Since $\mathcal{D}^{k} \cap L_{k-1}=\emptyset$ and $\left(\mathcal{B}^{1} \cup\right.$ $\left.\cdots \cup \mathcal{B}^{k-1}\right) \cap \mathcal{D}^{k}=\emptyset$, we have that $\left(\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{k-1}\right) \cap \mathcal{D}^{k}$ consists of a disjoint union of simple loops. Let γ be a loop of $\left(\mathcal{D}^{1} \cup \cdots \cup \mathcal{D}^{k-1}\right) \cap \mathcal{D}^{k}$ which is innermost on \mathcal{D}^{k} and δ the disk on \mathcal{D}^{k} with $\partial \delta=\gamma$. Let σ be a disk on D_{q}^{p} of \mathcal{D}^{p} with $\partial \sigma=\gamma$ for $p<k$. Since γ is innermost on \mathcal{D}^{k}, we have that int $\delta \cap \mathcal{D}^{p}=\emptyset$. Let $\gamma^{+}=\partial N\left(\gamma: D_{q}^{p}-\sigma\right)-\gamma$ and δ^{+}a disk parallel to δ

Figure 6:
with $\partial \delta^{+}=\gamma^{+}$. We deform D_{q}^{p} into $D_{q}^{p+}=\left(D_{q}^{p}-N\left(\sigma: D_{q}^{p}\right)\right) \cup \delta^{+}$by isotopy as illustrated in Figure 7. By repeating the deformation, we obtain that \mathcal{D} is a disjoint union of disks.

Figure 7:
Therefore we obtain the sufficiency.

References

[1] C. H. Goldberg, On the genera of links, Ph. D. Thesis of Princeton Univ. (1970).
[2] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple ribbon fusions and genera of links, preprint.
[3] K. Kishimoto, T. Shibuya and T. Tsukamoto, Primeness of knots obtained by a simple ribbon fusion, preprint.
[4] K. Kobayashi, T. Shibuya and T. Tsukamoto, Simple ribbon moves for links, Osaka J. Math., to appear.

Kengo KISHIMOTO
Department of Mathematics
Osaka Institute of Technology
Omiya 5-6-1, Asahi
Osaka 535-8585, Japan
E-mail: kishimoto@ge.oit.ac.jp

Tetsuo SHIBUYA
Department of Mathematics
Osaka Institute of Technology
Omiya 5-6-1, Asahi
Osaka 535-8585, Japan
E-mail: shibuya@ge.oit.ac.jp

