Memoirs of Osaka Institute of Technology Vol. 65, No. 1 (2020) pp. 43~50

Simple-ribbon fusions and primeness of links ¹

by

Tetsuo SHIBUYA and Tatsuya TSUKAMOTO* Department of General Education, Faculty of Engineering (Manuscripts received July 28, 2020)

Abstract

In [KST16], we introduced a special kind of fusion, (elementary) simple-ribbon fusion, for knots and links, and in [KST18], we studied the primeness of knots obtained by an elementary simple-ribbon fusion. In this paper, we study the case for links.

 ${\bf Keywords; knots, links, primeness}$

1. INTRODUCTION

Knots and links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in an oriented 3-sphere S^3 . Throughout this paper links are assumed to have at least 2 components, and thus a knot is not a link. In [KST16], we introduced special types of fusions, so called simple-ribbon fusions. Here we only define an elementary simple-ribbon fusion. Refer [KST16] for a general simple-ribbon fusion, which can be realized by elementary simple-ribbon fusions.

A (m-)ribbon fusion on a link ℓ is an *m*-fusion ([AK96, Definition 13.1.1]) on the split union of ℓ and an *m*-component trivial link \mathcal{O} such that each component of \mathcal{O} is attached to a component of ℓ by a single band. Note that any knot obtained from the trivial knot by a finite sequence of ribbon fusions is a *ribbon knot* ([AK96, Definition 13.1.9]), and that any ribbon knot can be obtained from the trivial knot by ribbon fusions.

Let ℓ be a link and $\mathcal{O} = O_1 \cup \cdots \cup O_m$ the *m*-component trivial link which is split from ℓ . Let $\mathcal{D} = D_1 \cup \cdots \cup D_m$ be a disjoint union of non-singular disks with $\partial D_i = O_i$ and $D_i \cap \ell = \emptyset$ $(i = 1, \cdots, m)$, and let $\mathcal{B} = B_1 \cup \cdots \cup B_m$ be a disjoint union of disks for an *m*-fusion, called *bands*, on the split union of ℓ and \mathcal{O} satisfying the following:

- (i) $B_i \cap \ell = \partial B_i \cap \ell = \{ a \text{ single arc } \};$
- (ii) $B_i \cap \mathcal{O} = \partial B_i \cap O_i = \{ \text{ a single arc } \}; \text{ and }$
- (iii) $B_i \cap \operatorname{int} \mathcal{D} = B_i \cap \operatorname{int} D_{i+1} = \{ \text{ a single arc of ribbon type } \}$, where the indices are considered modulo m.

Let *L* be a link obtained from the split union of ℓ and \mathcal{O} by the *m*-fusion along \mathcal{B} , i.e., $L = (\ell \cup \mathcal{O} \cup \partial \mathcal{B}) - \operatorname{int}(\mathcal{B} \cap \ell) - \operatorname{int}(\mathcal{B} \cap \mathcal{O})$. Then we say that *L* is obtained from ℓ by an elementary simple-ribbon fusion, or *SR*-fusion for short, of type *m* (with respect to $\mathcal{D} \cup \mathcal{B}$).

An elementary SR-fusion is trivial if \mathcal{O} bounds mutually disjoint non-singular disks $\cup \Delta_i$ such that $\partial \Delta_i = O_i$ and that $\operatorname{int} \Delta_i$ does not intersect with $L \cup \mathcal{B}$ for each i $(1 \leq i \leq m)$. Here note that $\cup \Delta_i$ may intersect with $\operatorname{int} \mathcal{D}$. Since L is ambient isotopic to ℓ through $(\cup \Delta_i) \cup \mathcal{B}$, we know that any trivial SR-fusion does not change the link type. It is easy to see that an elementary SR-fusion is trivial if and only if there is an j $(1 \leq j \leq m)$ such that O_j bounds a non-singular disk whose interior does not intersect with $L \cup \mathcal{B}$.

A non-singular 2-sphere Σ is called a decomposing sphere of a link L if Σ intersects with L transversally in two points. A decomposing sphere of L is called *trivial* if Σ bounds a 3-ball intersecting with L in a trivial arc. A link L is said to be *split* if there is a non-singular 2-sphere Ω in $S^3 - L$ such that $E_1 \cup E_2 = S^3$, $E_1 \cap E_2 = \Omega$, and $L_i (= L \cap E_i^3) \neq \emptyset$ (i = 1, 2). A non-split link L is prime if any decomposing sphere for L is trivial. We remark here that the 2-component trivial link is the only split link which admits a non-trivial decomposing sphere.

A non-trivial *SR*-fusion on a link ℓ with respect to $\mathcal{D} \cup \mathcal{B}$ is *prime* if for any 2-sphere Σ which intersects with $\ell - \mathcal{B}$ transversally in two points and satisfies that $\Sigma \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$, Σ bounds a 3-ball *H* such that $H \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$ and that $H \cap \ell$ is a trivial arc. Then we showed the following in [KST18].

3

elementary SR-fusion. If the type of the elementary SR-fusion is no less than 3, k is non-trivial, or K is neither $3_1 \ddagger \overline{3_1}$ nor $4_1 \ddagger 4_1$, then K is prime.

The following is our main theorem.

Theorem 1.2. Let L be a link obtained from a link ℓ by an elementary SR-fusion. If the SR-fusion is non-trivial and prime, then L is prime.

Corollary 1.3. Let L be a link obtained from a link ℓ by an elementary SR-fusion. If ℓ is a trivial link \mathcal{O} and L is a non-split link, then L is prime.

Proof. Since ℓ is a trivial link and L is a non-split link, L is not ambient isotopic to ℓ . Hence the elementary *SR*-fusion is not trivial by Theorem 1.1 of [KST16]. Next let Σ be a 2-sphere which intersects with $\ell - \mathcal{B}$ transversally in two points and satisfies that $\Sigma \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$. We may assume that Σ intersects with O^1 of $\ell = \mathcal{O}$. Let H be a 3-ball bounded by Σ such that $H \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$. Since genus of knot is additive under connected sum, $O^1 \cap H$ is a trivial arc. In fact, since \mathcal{O} is a trivial link and L is non-split, $\ell \cap H = O^1 \cap H$. Hence the elementary *SR*-fusion is also prime, and thus L is prime by Theorem 1.2.

Corollary 1.4. Let L be a link obtained from a link ℓ by an elementary SR-fusion. If ℓ is a non-split link and the SR-fusion is prime, then L is prime.

Proof. It is sufficient to show that the SR-fusion is non-trivial. Assume otherwise. Since ℓ is a non-split link, the SR-fusion is of type 1 with respect to $D_1 \cup B_1$, and $O_1 = \partial D_1$ bounds a non-singular disk Δ such that $\operatorname{int}\Delta \cap (L \cup D_1 \cup B_1) = \emptyset$ by Theorem 1.2 of [KST17]. Let Σ be the 2-sphere $\Delta \cup D_1$. Push D_1 of Σ to the direction of $B_1 \cap \ell$ so to separate D_1 and ℓ by Σ . Then slide $\Sigma \cap B_1$ along B_1 to $B_1 \cap \ell$ and push $\Sigma \cap B_1$ so that Σ intersects with $L \cup D_1 \cup B_1$ in two points of $\ell - B_1$. Since ℓ is non-split, and thus ℓ is non-trivial, we can see that our elementary SR-fusion is not prime, which is a contradiction. \Box

2. Proof of Theorem 1.2

Let *L* be a link obtained from a link ℓ by an elementary *SR*-fusion of type *m* with respect to $\mathcal{D} \cup \mathcal{B} = (D_1 \cup \cdots \cup D_m) \cup (B_1 \cup \cdots \cup B_m)$ and Σ a decomposing sphere for *L*. We may assume that each D_i is a plane disk $(1 \leq i \leq m)$, and that Σ and $\mathcal{D} \cup \mathcal{B}$ intersects transversally.

Let \dot{D}_i and \dot{B}_i be disks and $f: \bigcup_i \left(\dot{D}_i \cup \dot{B}_i\right) \to S^3$ an immersion such that $f(\dot{D}_i) = D_i$ and $f(\dot{B}_i) = B_i$. We denote the arc of int $D_i \cap B_{i-1}$ by α_i and let $B_{i,1}$ and $B_{i,2}$ be the subdisks of B_i such that $B_{i,1} \cup B_{i,2} = B_i$, $B_{i,1} \cap B_{i,2} = \alpha_{i+1}$, and $B_{i,1} \cap \partial D_i \neq \emptyset$. Take a point b_i on int α_i , an arc β_i on $D_i \cup B_{i,1}$ so that $b_i \cap (\alpha_i \cup \alpha_{i+1}) = \partial \beta_i = b_i \cup b_{i+1}$, and orient the arc β_i from b_{i+1} to b_i $(i = 1, \ldots, m)$ (see Figure 1). Then $\beta = \bigcup_i \beta_i$ is an oriented simple loop and we call β an attendant knot of $\mathcal{D} \cup \mathcal{B}$. Moreover, we denote the pre-images of α_i (resp. b_i) on \dot{D}_i and \dot{B}_{i-1} by $\dot{\alpha}_i$ and $\ddot{\alpha}_i$ (resp. \dot{b}_i and \ddot{b}_i), respectively.

The set S_i of the pre-images on $D_i \cup B_i$ of the intersections of Σ and $D_i \cup B_i$ consists of arcs and loops which are mutually disjoint and simple. Let $S = \bigcup_i S_i$. Define the *complexity* of Σ as the lexicographically ordered set (s_1, s_2, s_3) , where s_1 (resp. s_2) is the number of arcs (resp. loops) of S and s_3 is the number of triple points of $(\mathcal{D} \cup \mathcal{B}) \cup \Sigma$. An arc of S_i is *standard* if the

arc has one end on $\partial \dot{D}_i - \partial \dot{B}_i$ and the other end on the pre-image of $\partial B_i \cap \ell$, and intersects with each of $\dot{\alpha}_i$ and $\ddot{\alpha}_{i+1}$ exactly once (see type 3b of Figure 5). We say that Σ is in a *standard position* if \mathcal{S} consists of only standard arcs.

Lemma 2.1. Let L be a link obtained from a link ℓ by a non-trivial elementary SR-fusion with respect to $\mathcal{D} \cup \mathcal{B}$. If Σ has the minimal complexity among all the non-trivial decomposing sphere for L and satisfies that $\Sigma \cap (\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, then Σ is in a standard position.

Proof. Since $\Sigma \cap (\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, we have that $\mathcal{S} \neq \emptyset$.

Claim 2.2. S_i does not have a loop which bounds a disk on $\dot{D}_i \cup \dot{B}_i$ intersecting with neither $\dot{\alpha}_i$ nor $\ddot{\alpha}_{i+1}$ for each *i*.

Proof. Assume otherwise. Take an innermost one $\dot{\rho}$ from such loops on $\dot{D}_i \cup \dot{B}_i$ and let δ be the disk bounded by $\rho = f(\dot{\rho})$ on $D_i \cup B_i$. Replace a neighborhood of ρ in Σ with two parallel copies of δ (see Figure 2). We obtain two spheres Σ_1 and Σ_2 , where we may assume that $\Sigma_1 \cap L$ consists of two points and $\Sigma_2 \cap L = \emptyset$. Then Σ_1 is another non-trivial decomposing sphere for L with less complexity than that of Σ , which contradicts that Σ has the minimal complexity. \Box

FIGURE 2. surgery on Σ with respect to δ

Claim 2.3. None of the elements of S_i has a subarc which bounds a disk on $\dot{D}_i \cup \dot{B}_i$ with a subarc of int $\dot{\alpha}_i$ or int $\ddot{\alpha}_{i+1}$ whose interior is disjoint from both of $\dot{\alpha}_i$ and $\ddot{\alpha}_{i+1}$.

Proof. Assume otherwise and take an innermost one from such subarcs, i.e., it bounds a disk δ on $\dot{D}_i \cup \dot{B}_i$ with a subarc of int $\dot{\alpha}_i$ (resp. int $\ddot{\alpha}_{i+1}$) whose interior does not contain any other such subarcs. Since $\dot{\delta}$ does not contain any loops from Claim 2.2, we can deform $\partial(\delta \times I) \cap \Sigma$ of Σ to the closure δ' of $\partial(\delta \times I) - \Sigma$ along $\delta \times I$ as illustrated in Figure 3 and push δ' of Σ out of B_{i-1} (resp. D_{i+1}) to eliminate the two triple points, which contradicts that Σ has the minimal complexity.

FIGURE 3. eliminating triple points

Claim 2.4. S has no loops.

Proof. By the above two claims, we may assume that each loop of S_i is on D_i , and bounds a disk on \dot{D}_i containing $\dot{\alpha}_i$ or intersects with $\dot{\alpha}_i$ in one point. Let $\dot{\rho}$ be a loop of S_i .

Assume that $\dot{\rho}$ bounds a disk $\dot{\delta}$ on \dot{D}_i containing $\dot{\alpha}_i$. Since $\delta = f(\dot{\delta})$ intersects with L in two points of $\partial \alpha_i$, one component of $\Sigma - \rho$ intersects with L in two points and the other component δ' does not intersect with L. Thus we can slide $L \cap \partial (D_i \cup B_i)$ onto $\ell \cap B_i$ along $((D_i - \delta) \cup \delta') \cup B_i$, which induces that the *SR*-fusion is trivial by Theorem 1.1 of [KST16], which contradicts the assumption.

If S_i has a loop on \dot{D}_i which intersects with $\dot{\alpha}_i$ in one point, then take an innermost one $\dot{\rho}$ on \dot{D}_i and let δ be the disk bounded by $\rho = f(\dot{\rho})$ on D_i . Replace a neighborhood of ρ in Σ with two parallel copies of δ as illustrated in Figure 4. Then we have two spheres Σ_1 and Σ_2 and at least one sphere, say Σ_1 is a non-trivial decomposing sphere for L, whose complexity is less than that of Σ . This contradicts that Σ has the minimal complexity. Thus we complete the proof.

FIGURE 4. surgery on Σ along δ

Therefore each S_i has only arcs. We may assume that the end points of the image of each arc by f are on $(\partial D_i - \partial B_i) \cup (\partial B_i \cap \ell)$ by isotoping Σ so that the end point on $\partial B_{i,1}$ (resp. $\partial B_{i,2}$) moves onto $\partial D_i - \partial B_i$ (resp. $\partial B_i \cap \ell$) if necessary. Then each arc $\dot{\gamma}$ is one of the following 8 types.

Type 1: the both two end points are on $\partial \dot{D}_i - \partial \dot{B}_i$. Let $\dot{\delta}$ be the subdisk of \dot{D}_i bounded by $\dot{\gamma}$ with a subarc $\dot{\zeta}$ of $\partial \dot{D}_i - \partial \dot{B}_i$. We have three cases that $\dot{\delta} \cap \dot{\alpha}_i = \emptyset$ (Type 1a), $\dot{\gamma}$ intersects with int $\dot{\alpha}_i$ in one point (Type 1b), or $\dot{\delta}$ contains $\dot{\alpha}_i$ (Type 1c).

Type 2: the both two end points are on the pre-image of $\partial B_i \cap \ell$. Let $\dot{\delta}$ be the subdisk of $\dot{D}_i \cup \dot{B}_i$ bounded by $\dot{\gamma}$ with a subarc $\dot{\zeta}$ of the pre-image of $\partial B_i - \ell$. We have three cases that $\dot{\delta}$ is in $\dot{B}_{i,2}$ (Type 2a), $\dot{\gamma}$ intersects with int $\dot{\alpha}_i$ in one point (Type 2b), or $\dot{\delta}$ contains $\dot{\alpha}_i$ (Type 2c). Type 3: one end point is on $\partial \dot{D}_i - \partial \dot{B}_i$ and the other end point is on the pre-image of $\partial B_i \cap \ell$. $\dot{\gamma}$ does not intersect with $\dot{\alpha}_i$ (Type 3a) or $\dot{\gamma}$ intersects with $\dot{\alpha}_i$ in one point (Type 3b).

Let H be the 3-ball bounded by Σ which contains δ in the first 6 cases. Note that there does not exist an arc of type 1a, since otherwise $L \cap H = \zeta$ is a trivial arc, which contradicts that Σ is a non-trivial decomposing sphere. In addition there does not exist an arc of type 2a, since otherwise we can eliminate it by pushing Σ out of B_i .

Assume that \mathcal{S} contains an arc of type 1b and that $\dot{D}_h \cup \dot{B}_h$ contains such an arc $\dot{\gamma}$. Since Σ intersects with L in two points, any arc of \mathcal{S} other than $\dot{\gamma}$ has type 2b or 2c. Since $\alpha_h \cap \Sigma \neq \emptyset$, $\dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains an arc of type 2b or 2c. Thus $\dot{D}_h \cup \dot{B}_h$ contains an arc of type 2b. Then inductively from $\dot{D}_{h+1} \cup \dot{B}_{h+1}$ we can see that $\dot{D}_i \cup \dot{B}_i$ contains an arc of type 2b for any i $(1 \leq i \leq m)$. Hence we know that $\dot{D}_h \cup \dot{B}_h$ contains one arc of type 1b and arcs of type 2b, and $\dot{D}_i \cup \dot{B}_i$ $(i \neq h)$ contains at least one arc of type 2b and possibly arcs of type 2c. Now consider the number $\sharp (\mathcal{S} \cap \dot{\alpha}_i)$ of intersections of \mathcal{S} and $\dot{\alpha}_i$ $(1 \leq i \leq m)$. Since $f(\dot{\alpha}_i) = f(\ddot{\alpha}_i)$, we have that $\sharp (\mathcal{S} \cap \dot{\alpha}_i) = \sharp (\mathcal{S} \cap \ddot{\alpha}_i)$. Thus we have the following for h and i $(1 \leq i \leq m, i \neq h)$.

$$\sharp \left(\mathcal{S} \cap \dot{\alpha}_{h+1} \right) = \sharp \left(\mathcal{S} \cap \ddot{\alpha}_{h+1} \right) \ge \sharp \left(\mathcal{S} \cap \dot{\alpha}_{h} \right),$$

$$\sharp \left(\mathcal{S} \cap \dot{\alpha}_{i+1} \right) = \sharp \left(\mathcal{S} \cap \ddot{\alpha}_{i+1} \right) > \sharp \left(\mathcal{S} \cap \dot{\alpha}_{i} \right).$$

Here note that $\sharp (S \cap \dot{\alpha}_{m+1}) = \sharp (S \cap \dot{\alpha}_1)$, since we consider the lower index modulo m. Hence we have that m = h = 1, since otherwise we have that $\sharp (S \cap \dot{\alpha}_{m+1}) > \sharp (S \cap \dot{\alpha}_1)$. Thus we have two cases for $\dot{D}_1 - \partial \dot{B}_1$ as illustrated in Figure 6 depending how $f(\dot{D}_1)$ and $f(\dot{B}_1)$ intersect. Let \dot{p} be the boundary point of $\dot{\alpha}_1$ in $\dot{\delta}$ containing the arc of type 1b and take an arc $\dot{\eta}$ connecting \dot{p} and \ddot{p} which is the boundary point of \ddot{a}_1 and a pre-image of $f(\dot{p})$ as illustrated in Figure 6. However then, the loop $f(\dot{\eta})$ intersects Σ only once, which is impossible. Hence there does not exist an arc of type 1b.

FIGURE 6

Now assume that S contains an arc of type 1c and that $\dot{D}_h \cup \dot{B}_h$ contains such an arc $\dot{\gamma}$. Since Σ intersects with L in two points, any arc of S other than $\dot{\gamma}$ has type 2b or 2c. However since $\sharp (S \cap \dot{\alpha}_h) = 0$, $\dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains neither an arc of type 2b nor an arc of type 2c. Hence $\dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains no arcs of S and inductively we can see that $\dot{D}_i \cup \dot{B}_i$ contains no arcs of S for any $i \ (1 \le i \le m, i \ne h)$. Then an attendant knot of $\mathcal{D} \cup \mathcal{B}$ intersects with Σ only once,

Hence we know that any arc has type 3b by considering the number $\sharp(S \cap \dot{\alpha}_i)$ of intersections of S and $\dot{\alpha}_i$ $(1 \le i \le m)$. Hence Σ is in a standard position.

Lemma 2.5. A link L obtained from a link ℓ by a prime SR-fusion is non-split.

which is impossible. Hence there does not exist an arc of type 1c.

Proof. Assume that L is split and let Σ be a splitting sphere for L. Take a component ℓ_1 of ℓ such that $\ell_1 \cap \mathcal{B} \neq \emptyset$ and a point p of $\ell_1 - \mathcal{B}$. Let H be a neighborhood of p such that $H \cap (\ell \cup \mathcal{D} \cup \mathcal{B})$ is a trivial arc. Then take an arc γ in $S^3 - (\ell \cup \mathcal{D} \cup \mathcal{B})$ connecting a point on ∂H and a point of Σ . Let V be a neighborhood of γ in the closure of a component of $S^3 - \partial H - \partial \Sigma$. Then $\Sigma' = \partial H \cup \Sigma \cup \partial V - \operatorname{int}(\partial H \cap \partial V) - \operatorname{int}(\Sigma \cap \partial V)$ is a sphere which bounds a 3-ball H' such that $H' \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$ and $H' \cap \ell$ is not a trivial arc, which contradicts that the *SR*-fusion is prime.

Proof of Theorem 1.2. Assume that L is not prime and let Σ be a non-trivial decomposing sphere for L which has the minimal complexity among all the non-trivial decomposing sphere for L. Note that $\Sigma \cap (\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, since the *SR*-fusion is prime and Σ is a non-trivial decomposing sphere for L. Hence Σ is in a standard position by Lemma 2.1.

Therefore, each S_i consists of the same non-zero number of standard arcs $(1 \le i \le m)$. Since $\Sigma \cap K$ consists of just two points, we have the following three cases:

Case 1 : m = 1 and S_1 consists of one standard arc.

Case 2a: m = 1 and S_1 consists of two standard arcs.

Case 2b: m = 2 and S_i consists of one standard arc (i = 1, 2).

Let E_1 and E_2 be 3-balls such that $E_1 \cup E_2 = S^3$, $E_1 \cap E_2 = \Sigma$. In Case 1 and 2b, take a neighborhood F_i of $(D_1 \cup B_1)$ in E_i , and let Σ_i be $\Sigma \cup \partial F_i - \operatorname{int}(\Sigma \cap F_i)$. Then Σ_i is a 2-sphere which intersects with $\ell - \mathcal{B}$ transversally in two points and satisfies that $\Sigma_i \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$, and thus Σ_i bounds a 3-ball H_i such that $H_i \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$ and that $H_i \cap \ell$ is a trivial arc, since the SR-fusion is prime. Hence ℓ is a knot, which contradicts that ℓ is a link.

In Case 2a, assume that E_1 contains $\partial \alpha_1$. Similarly to the above case, take a neighborhood F_1 of $(D_1 \cup B_1)$ in E_1 , and let Σ_1 be $\Sigma \cup \partial F_1 - \operatorname{int}(\Sigma \cap F_1)$. Then Σ_1 is a 2-sphere which intersects with $\ell - \mathcal{B}$ transversally in two points and satisfies that $\Sigma_1 \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$, and thus Σ_1 bounds a 3-ball H_1 such that $H_1 \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$ and that $H_1 \cap \ell$ is a trivial arc, since the *SR*-fusion is prime.

Now take a look at E_2 . Note that $E_2 - (\mathcal{D} \cup \mathcal{B})$ consists of the interior of a solid torus V and the interior of a 3-ball as illustrated in Figure 7. Since L is non-split by Lemma 2.5 and ℓ is a link, E_2 contains a component ℓ_1 of ℓ in V which is homotopic to a longitude g of ∂V . Then isotop ℓ_1 to the direction of g and push ℓ_1 out of E_2 into E_1 , moreover into H_1 . However then, Σ_1 bounds a 3-ball H_1 such that $H_1 \cap (\mathcal{D} \cup \mathcal{B}) = \emptyset$ and that $H_1 \cap \ell$ is not a trivial arc, which contradicts that the SR-fusion is prime.

FIGURE 7

References

- [AK96] A. Kawauchi, A survey of knot theory, Birkhuser Verlag, Basel, 1996.
- [KST16] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions and genera of links, J. Math. Soc. Japan, 68 (2016) 1033–1045.
- [KST17] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions on non-split links, J. Knot Theory Ramifications, 26 (2017), 1741005, 15 pp.
- [KST18] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions and primeness of knots, J. Knot Theory Ramifications, 27 (2018), 1850057, 11 pp.

Tetsuo SHIBUYA

Tatsuya TSUKAMOTO (e-mail:tatsuya.tsukamoto@oit.ac.jp)

Department of Mathematics, Osaka Institute of Technology, Asahi, Osaka 535-8585, Japan