Simple-ribbon fusions and primeness of links ${ }^{1}$

by
Tetsuo SHIBUYA and Tatsuya TSUKAMOTO*
Department of General Education, Faculty of Engineering

(Manuscripts received July 28, 2020)

Abstract

In [KST16], we introduced a special kind of fusion, (elementary) simple-ribbon fusion, for knots and links, and in [KST18], we studied the primeness of knots obtained by an elementary simpleribbon fusion. In this paper, we study the case for links.

Keywords; knots, links, primeness

[^0]
1. Introduction

Knots and links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in an oriented 3 -sphere S^{3}. Throughout this paper links are assumed to have at least 2 components, and thus a knot is not a link. In [KST16], we introduced special types of fusions, so called simple-ribbon fusions. Here we only define an elementary simple-ribbon fusion. Refer [KST16] for a general simple-ribbon fusion, which can be realized by elementary simple-ribbon fusions.

A (m-) ribbon fusion on a link ℓ is an m-fusion ([AK96, Definition 13.1.1]) on the split union of ℓ and an m-component trivial link \mathcal{O} such that each component of \mathcal{O} is attached to a component of ℓ by a single band. Note that any knot obtained from the trivial knot by a finite sequence of ribbon fusions is a ribbon knot ([AK96, Definition 13.1.9]), and that any ribbon knot can be obtained from the trivial knot by ribbon fusions.

Let ℓ be a link and $\mathcal{O}=O_{1} \cup \cdots \cup O_{m}$ the m-component trivial link which is split from ℓ. Let $\mathcal{D}=D_{1} \cup \cdots \cup D_{m}$ be a disjoint union of non-singular disks with $\partial D_{i}=O_{i}$ and $D_{i} \cap \ell=\emptyset$ $(i=1, \cdots, m)$, and let $\mathcal{B}=B_{1} \cup \cdots \cup B_{m}$ be a disjoint union of disks for an m-fusion, called bands, on the split union of ℓ and \mathcal{O} satisfying the following:
(i) $B_{i} \cap \ell=\partial B_{i} \cap \ell=\{$ a single arc $\}$;
(ii) $B_{i} \cap \mathcal{O}=\partial B_{i} \cap O_{i}=\{$ a single arc $\}$; and
(iii) $B_{i} \cap \operatorname{int} \mathcal{D}=B_{i} \cap \operatorname{int} D_{i+1}=\{$ a single arc of ribbon type $\}$, where the indices are considered modulo m.

Let L be a link obtained from the split union of ℓ and \mathcal{O} by the m-fusion along \mathcal{B}, i.e., $L=(\ell \cup \mathcal{O} \cup \partial \mathcal{B})-\operatorname{int}(\mathcal{B} \cap \ell)-\operatorname{int}(\mathcal{B} \cap \mathcal{O})$. Then we say that L is obtained from ℓ by an elementary simple-ribbon fusion, or $S R$-fusion for short, of type m (with respect to $\mathcal{D} \cup \mathcal{B}$).

An elementary $S R$-fusion is trivial if \mathcal{O} bounds mutually disjoint non-singular disks $\cup \Delta_{i}$ such that $\partial \Delta_{i}=O_{i}$ and that int Δ_{i} does not intersect with $L \cup \mathcal{B}$ for each $i(1 \leq i \leq m)$. Here note that $\cup \Delta_{i}$ may intersect with int \mathcal{D}. Since L is ambient isotopic to ℓ through $\left(\cup \Delta_{i}\right) \cup \mathcal{B}$, we know that any trivial $S R$-fusion does not change the link type. It is easy to see that an elementary $S R$-fusion is trivial if and only if there is an $j(1 \leq j \leq m)$ such that O_{j} bounds a non-singular disk whose interior does not intersect with $L \cup \mathcal{B}$.

A non-singular 2-sphere Σ is called a decomposing sphere of a link L if Σ intersects with L transversally in two points. A decomposing sphere of L is called trivial if Σ bounds a 3 -ball intersecting with L in a trivial arc. A link L is said to be split if there is a non-singular 2 -sphere Ω in $S^{3}-L$ such that $E_{1} \cup E_{2}=S^{3}, E_{1} \cap E_{2}=\Omega$, and $L_{i}\left(=L \cap E_{i}^{3}\right) \neq \emptyset(i=1,2)$. A non-split link L is prime if any decomposing sphere for L is trivial. We remark here that the 2-component trivial link is the only split link which admits a non-trivial decomposing sphere, and also the only trivial link which admits a non-trivial decomposing sphere.

A non-trivial $S R$-fusion on a link ℓ with respect to $\mathcal{D} \cup \mathcal{B}$ is prime if for any 2 -sphere Σ which intersects with $\ell-\mathcal{B}$ transversally in two points and satisfies that $\Sigma \cap(\mathcal{D} \cup \mathcal{B})=\emptyset, \Sigma$ bounds a 3 -ball H such that $H \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$ and that $H \cap \ell$ is a trivial arc. Then we showed the following in [KST18].

Theorem 1.1. ([KST18, Theorem 1.1]) Let K be a knot obtained from a knot k by a prime elementary $S R$-fusion. If the type of the elementary $S R$-fusion is no less than $3, k$ is non-trivial, or K is neither $3_{1} \sharp \overline{3_{1}}$ nor $4_{1} \sharp 4_{1}$, then K is prime.

The following is our main theorem.
Theorem 1.2. Let L be a link obtained from a link ℓ by an elementary $S R$-fusion. If the $S R$-fusion is non-trivial and prime, then L is prime.

Corollary 1.3. Let L be a link obtained from a link ℓ by an elementary $S R$-fusion. If ℓ is a trivial link \mathcal{O} and L is a non-split link, then L is prime.

Proof. Since ℓ is a trivial link and L is a non-split link, L is not ambient isotopic to ℓ. Hence the elementary $S R$-fusion is not trivial by Theorem 1.1 of [KST16]. Next let Σ be a 2 -sphere which intersects with $\ell-\mathcal{B}$ transversally in two points and satisfies that $\Sigma \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$. We may assume that Σ intersects with O^{1} of $\ell=\mathcal{O}$. Let H be a 3 -ball bounded by Σ such that $H \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$. Since genus of knot is additive under connected sum, $O^{1} \cap H$ is a trivial arc. In fact, since \mathcal{O} is a trivial link and L is non-split, $\ell \cap H=O^{1} \cap H$. Hence the elementary $S R$-fusion is also prime, and thus L is prime by Theorem 1.2.

Corollary 1.4. Let L be a link obtained from a link ℓ by an elementary $S R$-fusion. If ℓ is a non-split link and the $S R$-fusion is prime, then L is prime.

Proof. It is sufficient to show that the $S R$-fusion is non-trivial. Assume otherwise. Since ℓ is a non-split link, the $S R$-fusion is of type 1 with respect to $D_{1} \cup B_{1}$, and $O_{1}=\partial D_{1}$ bounds a non-singular disk Δ such that int $\Delta \cap\left(L \cup D_{1} \cup B_{1}\right)=\emptyset$ by Theorem 1.2 of [KST17]. Let Σ be the 2 -sphere $\Delta \cup D_{1}$. Push D_{1} of Σ to the direction of $B_{1} \cap \ell$ so to separate D_{1} and ℓ by Σ. Then slide $\Sigma \cap B_{1}$ along B_{1} to $B_{1} \cap \ell$ and push $\Sigma \cap B_{1}$ so that Σ intersects with $L \cup D_{1} \cup B_{1}$ in two points of $\ell-B_{1}$. Since ℓ is non-split, and thus ℓ is non-trivial, we can see that our elementary $S R$-fusion is not prime, which is a contradiction.

2. Proof of Theorem 1.2

Let L be a link obtained from a link ℓ by an elementary $S R$-fusion of type m with respect to $\mathcal{D} \cup \mathcal{B}=\left(D_{1} \cup \cdots \cup D_{m}\right) \cup\left(B_{1} \cup \cdots \cup B_{m}\right)$ and Σ a decomposing sphere for L. We may assume that each D_{i} is a plane disk $(1 \leq i \leq m)$, and that Σ and $\mathcal{D} \cup \mathcal{B}$ intersects transversally.

Let \dot{D}_{i} and \dot{B}_{i} be disks and $f: \cup_{i}\left(\dot{D}_{i} \cup \dot{B}_{i}\right) \rightarrow S^{3}$ an immersion such that $f\left(\dot{D}_{i}\right)=D_{i}$ and $f\left(\dot{B}_{i}\right)=B_{i}$. We denote the arc of int $D_{i} \cap B_{i-1}$ by α_{i} and let $B_{i, 1}$ and $B_{i, 2}$ be the subdisks of B_{i} such that $B_{i, 1} \cup B_{i, 2}=B_{i}, B_{i, 1} \cap B_{i, 2}=\alpha_{i+1}$, and $B_{i, 1} \cap \partial D_{i} \neq \emptyset$. Take a point b_{i} on int α_{i}, an arc β_{i} on $D_{i} \cup B_{i, 1}$ so that $b_{i} \cap\left(\alpha_{i} \cup \alpha_{i+1}\right)=\partial \beta_{i}=b_{i} \cup b_{i+1}$, and orient the arc β_{i} from b_{i+1} to $b_{i}(i=1, \ldots, m)$ (see Figure 1). Then $\beta=\cup_{i} \beta_{i}$ is an oriented simple loop and we call β an attendant knot of $\mathcal{D} \cup \mathcal{B}$. Moreover, we denote the pre-images of α_{i} (resp. b_{i}) on \dot{D}_{i} and \dot{B}_{i-1} by $\dot{\alpha}_{i}$ and $\ddot{\alpha}_{i}$ (resp. \dot{b}_{i} and \ddot{b}_{i}), respectively.

The set \mathcal{S}_{i} of the pre-images on $\dot{D}_{i} \cup \dot{B}_{i}$ of the intersections of Σ and $D_{i} \cup B_{i}$ consists of arcs and loops which are mutually disjoint and simple. Let $\mathcal{S}=\cup_{i} \mathcal{S}_{i}$. Define the complexity of Σ as the lexicographically ordered set $\left(s_{1}, s_{2}, s_{3}\right)$, where s_{1} (resp. s_{2}) is the number of arcs (resp. loops) of \mathcal{S} and s_{3} is the number of triple points of $(\mathcal{D} \cup \mathcal{B}) \cup \Sigma$. An arc of \mathcal{S}_{i} is standard if the

Figure 1
arc has one end on $\partial \dot{D}_{i}-\partial \dot{B}_{i}$ and the other end on the pre-image of $\partial B_{i} \cap \ell$, and intersects with each of $\dot{\alpha}_{i}$ and $\ddot{\alpha}_{i+1}$ exactly once (see type 3b of Figure 5). We say that Σ is in a standard position if \mathcal{S} consists of only standard arcs.
Lemma 2.1. Let L be a link obtained from a link ℓ by a non-trivial elementary $S R$-fusion with respect to $\mathcal{D} \cup \mathcal{B}$. If Σ has the minimal complexity among all the non-trivial decomposing sphere for L and satisfies that $\Sigma \cap(\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, then Σ is in a standard position.
Proof. Since $\Sigma \cap(\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, we have that $\mathcal{S} \neq \emptyset$.
Claim 2.2. \mathcal{S}_{i} does not have a loop which bounds a disk on $\dot{D}_{i} \cup \dot{B}_{i}$ intersecting with neither $\dot{\alpha}_{i}$ nor $\ddot{\alpha}_{i+1}$ for each i.
Proof. Assume otherwise. Take an innermost one $\dot{\rho}$ from such loops on $\dot{D}_{i} \cup \dot{B}_{i}$ and let δ be the disk bounded by $\rho=f(\dot{\rho})$ on $D_{i} \cup B_{i}$. Replace a neighborhood of ρ in Σ with two parallel copies of δ (see Figure 2). We obtain two spheres Σ_{1} and Σ_{2}, where we may assume that $\Sigma_{1} \cap L$ consists of two points and $\Sigma_{2} \cap L=\emptyset$. Then Σ_{1} is another non-trivial decomposing sphere for L with less complexity than that of Σ, which contradicts that Σ has the minimal complexity.

Figure 2. surgery on Σ with respect to δ
Claim 2.3. None of the elements of \mathcal{S}_{i} has a subarc which bounds a disk on $\dot{D}_{i} \cup \dot{B}_{i}$ with a subarc of int $\dot{\alpha}_{i}$ or int $\ddot{\alpha}_{i+1}$ whose interior is disjoint from both of $\dot{\alpha}_{i}$ and $\ddot{\alpha}_{i+1}$.
Proof. Assume otherwise and take an innermost one from such subarcs, i.e., it bounds a disk $\dot{\delta}$ on $\dot{D}_{i} \cup \dot{B}_{i}$ with a subarc of int $\dot{\alpha}_{i}$ (resp. int $\ddot{\alpha}_{i+1}$) whose interior does not contain any other such subarcs. Since $\dot{\delta}$ does not contain any loops from Claim 2.2, we can deform $\partial(\delta \times I) \cap \Sigma$ of Σ to the closure δ^{\prime} of $\partial(\delta \times I)-\Sigma$ along $\delta \times I$ as illustrated in Figure 3 and push δ^{\prime} of Σ out of B_{i-1} (resp. D_{i+1}) to eliminate the two triple points, which contradicts that Σ has the minimal complexity.

Figure 3. eliminating triple points
Claim 2.4. \mathcal{S} has no loops.
Proof. By the above two claims, we may assume that each loop of \mathcal{S}_{i} is on \dot{D}_{i}, and bounds a disk on \dot{D}_{i} containing $\dot{\alpha}_{i}$ or intersects with $\dot{\alpha}_{i}$ in one point. Let $\dot{\rho}$ be a loop of \mathcal{S}_{i}.
Assume that $\dot{\rho}$ bounds a disk $\dot{\delta}$ on \dot{D}_{i} containing $\dot{\alpha}_{i}$. Since $\delta=f(\dot{\delta})$ intersects with L in two points of $\partial \alpha_{i}$, one component of $\Sigma-\rho$ intersects with L in two points and the other component δ^{\prime} does not intersect with L. Thus we can slide $L \cap \partial\left(D_{i} \cup B_{i}\right)$ onto $\ell \cap B_{i}$ along $\left(\left(D_{i}-\delta\right) \cup \delta^{\prime}\right) \cup B_{i}$, which induces that the $S R$-fusion is trivial by Theorem 1.1 of [KST16], which contradicts the assumption.

If \mathcal{S}_{i} has a loop on \dot{D}_{i} which intersects with $\dot{\alpha}_{i}$ in one point, then take an innermost one $\dot{\rho}$ on \dot{D}_{i} and let δ be the disk bounded by $\rho=f(\dot{\rho})$ on D_{i}. Replace a neighborhood of ρ in Σ with two parallel copies of δ as illustrated in Figure 4. Then we have two spheres Σ_{1} and Σ_{2} and at least one sphere, say Σ_{1} is a non-trivial decomposing sphere for L, whose complexity is less than that of Σ. This contradicts that Σ has the minimal complexity. Thus we complete the proof.

Figure 4. surgery on Σ along δ
Therefore each \mathcal{S}_{i} has only arcs. We may assume that the end points of the image of each arc by f are on $\left(\partial D_{i}-\partial B_{i}\right) \cup\left(\partial B_{i} \cap \ell\right)$ by isotoping Σ so that the end point on $\partial B_{i, 1}$ (resp. $\partial B_{i, 2}$) moves onto $\partial D_{i}-\partial B_{i}$ (resp. $\partial B_{i} \cap \ell$) if necessary. Then each arc $\dot{\gamma}$ is one of the following 8 types.
Type 1: the both two end points are on $\partial \dot{D}_{i}-\partial \dot{B}_{i}$. Let $\dot{\delta}$ be the subdisk of \dot{D}_{i} bounded by $\dot{\gamma}$ with a subarc $\dot{\zeta}$ of $\partial \dot{D}_{i}-\partial \dot{B}_{i}$. We have three cases that $\dot{\delta} \cap \dot{\alpha}_{i}=\emptyset$ (Type 1a), $\dot{\gamma}$ intersects with int $\dot{\alpha}_{i}$ in one point (Type 1b), or $\dot{\delta}$ contains $\dot{\alpha}_{i}$ (Type 1c).
Type 2: the both two end points are on the pre-image of $\partial B_{i} \cap \ell$. Let $\dot{\delta}$ be the subdisk of $\dot{D}_{i} \cup \dot{B}_{i}$ bounded by $\dot{\gamma}$ with a subarc $\dot{\zeta}$ of the pre-image of $\partial B_{i}-\ell$. We have three cases that $\dot{\delta}$ is in $\dot{B}_{i, 2}$ (Type 2a), $\dot{\gamma}$ intersects with int $\dot{\alpha}_{i}$ in one point (Type 2b), or $\dot{\delta}$ contains $\dot{\alpha}_{i}$ (Type 2c).

Type 3 : one end point is on $\partial \dot{D}_{i}-\partial \dot{B}_{i}$ and the other end point is on the pre-image of $\partial B_{i} \cap \ell$. $\dot{\gamma}$ does not intersect with $\dot{\alpha}_{i}$ (Type 3a) or $\dot{\gamma}$ intersects with $\dot{\alpha}_{i}$ in one point (Type 3 b).

Figure 5
Let H be the 3 -ball bounded by Σ which contains δ in the first 6 cases. Note that there does not exist an arc of type 1a, since otherwise $L \cap H=\zeta$ is a trivial arc, which contradicts that Σ is a non-trivial decomposing sphere. In addition there does not exist an arc of type 2a, since otherwise we can eliminate it by pushing Σ out of B_{i}.

Assume that \mathcal{S} contains an arc of type 1 b and that $\dot{D}_{h} \cup \dot{B}_{h}$ contains such an arc $\dot{\gamma}$. Since Σ intersects with L in two points, any arc of \mathcal{S} other than $\dot{\gamma}$ has type 2 b or 2 c. Since $\alpha_{h} \cap \Sigma \neq \emptyset$, $\dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains an arc of type 2 b or 2 c. Thus $\dot{D}_{h} \cup \dot{B}_{h}$ contains an arc of type 2 b . Then inductively from $\dot{D}_{h+1} \cup \dot{B}_{h+1}$ we can see that $\dot{D}_{i} \cup \dot{B}_{i}$ contains an arc of type 2 b for any i $(1 \leq i \leq m)$. Hence we know that $\dot{D}_{h} \cup \dot{B}_{h}$ contains one arc of type 1 b and arcs of type 2 b , and $\dot{D}_{i} \cup \dot{B}_{i}(i \neq h)$ contains at least one arc of type 2 b and possibly arcs of type 2 c . Now consider the number $\sharp\left(\mathcal{S} \cap \dot{\alpha}_{i}\right)$ of intersections of \mathcal{S} and $\dot{\alpha}_{i}(1 \leq i \leq m)$. Since $f\left(\dot{\alpha}_{i}\right)=f\left(\ddot{\alpha}_{i}\right)$, we have that $\#\left(\mathcal{S} \cap \dot{\alpha}_{i}\right)=\sharp\left(\mathcal{S} \cap \ddot{\alpha}_{i}\right)$. Thus we have the following for h and $i(1 \leq i \leq m, i \neq h)$.

$$
\begin{aligned}
& \sharp\left(\mathcal{S} \cap \dot{\alpha}_{h+1}\right)=\sharp\left(\mathcal{S} \cap \ddot{\alpha}_{h+1}\right) \geq \sharp\left(\mathcal{S} \cap \dot{\alpha}_{h}\right), \\
& \sharp\left(\mathcal{S} \cap \dot{\alpha}_{i+1}\right)=\sharp\left(\mathcal{S} \cap \ddot{\alpha}_{i+1}\right)>\sharp\left(\mathcal{S} \cap \dot{\alpha}_{i}\right) .
\end{aligned}
$$

Here note that $\sharp\left(\mathcal{S} \cap \dot{\alpha}_{m+1}\right)=\sharp\left(\mathcal{S} \cap \dot{\alpha}_{1}\right)$, since we consider the lower index modulo m. Hence we have that $m=h=1$, since otherwise we have that $\sharp\left(\mathcal{S} \cap \dot{\alpha}_{m+1}\right)>\sharp\left(\mathcal{S} \cap \dot{\alpha}_{1}\right)$. Thus we have two cases for $\dot{D}_{1}-\partial \dot{B}_{1}$ as illustrated in Figure 6 depending how $f\left(\dot{D}_{1}\right)$ and $f\left(\dot{B}_{1}\right)$ intersect. Let \dot{p} be the boundary point of $\dot{\alpha}_{1}$ in $\dot{\delta}$ containing the arc of type 1 b and take an arc $\dot{\eta}$ connecting \dot{p} and \ddot{p} which is the boundary point of \ddot{a}_{1} and a pre-image of $f(\dot{p})$ as illustrated in Figure 6 . However then, the loop $f(\dot{\eta})$ intersects Σ only once, which is impossible. Hence there does not exist an arc of type 1b.

Figure 6

Now assume that \mathcal{S} contains an arc of type 1 c and that $\dot{D}_{h} \cup \dot{B}_{h}$ contains such an arc $\dot{\gamma}$. Since Σ intersects with L in two points, any arc of \mathcal{S} other than $\dot{\gamma}$ has type 2 b or 2c. However since $\sharp\left(\mathcal{S} \cap \dot{\alpha}_{h}\right)=0, \dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains neither an arc of type 2 b nor an arc of type 2c. Hence $\dot{D}_{h-1} \cup \dot{B}_{h-1}$ contains no arcs of \mathcal{S} and inductively we can see that $\dot{D}_{i} \cup \dot{B}_{i}$ contains no arcs of \mathcal{S} for any $i(1 \leq i \leq m, i \neq h)$. Then an attendant knot of $\mathcal{D} \cup \mathcal{B}$ intersects with Σ only once, which is impossible. Hence there does not exist an arc of type 1c.

Hence we know that any arc has type 3 b by considering the number $\sharp\left(\mathcal{S} \cap \dot{\alpha}_{i}\right)$ of intersections of \mathcal{S} and $\dot{\alpha}_{i}(1 \leq i \leq m)$. Hence Σ is in a standard position.

Lemma 2.5. A link L obtained from a link ℓ by a prime $S R$-fusion is non-split.
Proof. Assume that L is split and let Σ be a splitting sphere for L. Take a component ℓ_{1} of ℓ such that $\ell_{1} \cap \mathcal{B} \neq \emptyset$ and a point p of $\ell_{1}-\mathcal{B}$. Let H be a neighborhood of p such that $H \cap(\ell \cup \mathcal{D} \cup \mathcal{B})$ is a trivial arc. Then take an arc γ in $S^{3}-(\ell \cup \mathcal{D} \cup \mathcal{B})$ connecting a point on ∂H and a point of Σ. Let V be a neighborhood of γ in the closure of a component of $S^{3}-\partial H-\partial \Sigma$. Then $\Sigma^{\prime}=\partial H \cup \Sigma \cup \partial V-\operatorname{int}(\partial H \cap \partial V)-\operatorname{int}(\Sigma \cap \partial V)$ is a sphere which bounds a 3 -ball H^{\prime} such that $H^{\prime} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$ and $H^{\prime} \cap \ell$ is not a trivial arc, which contradicts that the $S R$-fusion is prime.

Proof of Theorem 1.2. Assume that L is not prime and let Σ be a non-trivial decomposing sphere for L which has the minimal complexity among all the non-trivial decomposing sphere for L. Note that $\Sigma \cap(\mathcal{D} \cup \mathcal{B}) \neq \emptyset$, since the $S R$-fusion is prime and Σ is a non-trivial decomposing sphere for L. Hence Σ is in a standard position by Lemma 2.1.

Therefore, each \mathcal{S}_{i} consists of the same non-zero number of standard arcs $(1 \leq i \leq m)$. Since $\Sigma \cap K$ consists of just two points, we have the following three cases:
Case 1:m=1 and \mathcal{S}_{1} consists of one standard arc.
Case $2 a: m=1$ and \mathcal{S}_{1} consists of two standard arcs.
Case $2 b: m=2$ and \mathcal{S}_{i} consists of one standard $\operatorname{arc}(i=1,2)$.
Let E_{1} and E_{2} be 3-balls such that $E_{1} \cup E_{2}=S^{3}, E_{1} \cap E_{2}=\Sigma$. In Case 1 and 2b, take a neighborhood F_{i} of $\left(D_{1} \cup B_{1}\right)$ in E_{i}, and let Σ_{i} be $\Sigma \cup \partial F_{i}-\operatorname{int}\left(\Sigma \cap F_{i}\right)$. Then Σ_{i} is a 2 -sphere which intersects with $\ell-\mathcal{B}$ transversally in two points and satisfies that $\Sigma_{i} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$, and thus Σ_{i} bounds a 3-ball H_{i} such that $H_{i} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$ and that $H_{i} \cap \ell$ is a trivial arc, since the $S R$-fusion is prime. Hence ℓ is a knot, which contradicts that ℓ is a link.

In Case $2 a$, assume that E_{1} contains $\partial \alpha_{1}$. Similarly to the above case, take a neighborhood F_{1} of $\left(D_{1} \cup B_{1}\right)$ in E_{1}, and let Σ_{1} be $\Sigma \cup \partial F_{1}-\operatorname{int}\left(\Sigma \cap F_{1}\right)$. Then Σ_{1} is a 2 -sphere which intersects with $\ell-\mathcal{B}$ transversally in two points and satisfies that $\Sigma_{1} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$, and thus Σ_{1} bounds a 3-ball H_{1} such that $H_{1} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$ and that $H_{1} \cap \ell$ is a trivial arc, since the $S R$-fusion is prime.

Now take a look at E_{2}. Note that $E_{2}-(\mathcal{D} \cup \mathcal{B})$ consists of the interior of a solid torus V and the interior of a 3-ball as illustrated in Figure 7. Since L is non-split by Lemma 2.5 and ℓ is a link, E_{2} contains a component ℓ_{1} of ℓ in V which is homotopic to a longitude g of ∂V. Then isotop ℓ_{1} to the direction of g and push ℓ_{1} out of E_{2} into E_{1}, moreover into H_{1}. However then, Σ_{1} bounds a 3-ball H_{1} such that $H_{1} \cap(\mathcal{D} \cup \mathcal{B})=\emptyset$ and that $H_{1} \cap \ell$ is not a trivial arc, which contradicts that the $S R$-fusion is prime.

Figure 7

References

[AK96] A. Kawauchi, A survey of knot theory, Birkhuser Verlag, Basel, 1996.
[KST16] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions and genera of links, J. Math. Soc. Japan, 68 (2016) 1033-1045.
[KST17] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions on non-split links, J. Knot Theory Ramifications, 26 (2017), 1741005, 15 pp.
[KST18] K. Kishimoto, T. Shibuya and T. Tsukamoto, Simple-ribbon fusions and primeness of knots, J. Knot Theory Ramifications, 27 (2018), 1850057, 11 pp.

Tetsuo SHIBUYA
Tatsuya TSUKAMOTO (e-mail:tatsuya.tsukamoto@oit.ac.jp)
Department of Mathematics, Osaka Institute of Technology, Asahi,Osaka 535-8585, Japan

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Number JP16K05162 and JP19K21621.

