# On Local Moves for Links of Genus Zero, II 

by

Tetsuo SHIBUYA<br>Department of General Education, Faculty of Engineering<br>(Manuscript received May 30, 2003)


#### Abstract

In the previous paper, [5], we studied that the links of genus 0 were self \# -or self pass-equivalent to trivial links under some conditions.

In this paper, we study that two homotopic links of genus 0 are self \# -or self pass-equivalent under what kinds of conditions.


## 1 Introduction.

In the previous paper, [5], we studied that the links of genus 0 were self $\sharp$ - or self pass-equivalent to trivial links under some conditions. The definitions of self $\sharp-$ and self pass-equivalence of links, see $[3],[5],[6]$

In this paper, we study that two homotopic links of genus 0 are self $\sharp$ - or self pass-equivalent under what kind of conditions.

We deal the self $\sharp$ - and self pass-equivalence for homotopic links as the boundaries of surfaces of genus 0 in section 2 and we do for links as the boundaries of mutually disjoint annuli and prove Theorems 2.3, 2.5 and 3.1 respectively.

As applications of these theorems, we att.empt the classifications of $2-, 3-$ and 4 -component homotopic links of genus 0 and show Corollaries 2.6 and 3.4.

## 2 General case: Links as the boundaries of surfaces of genus 0 .

An $n$-component link $\ell=k_{1} \cup \ldots \cup k_{n}$ in $R^{3}$ is said to be proper if the linking number, denoted by $\operatorname{Link}\left(k_{i} \ell-k_{i}\right)\left(=\sum_{j \neq i} \operatorname{Link}\left(k_{i}, k_{j}\right)\right)$, is even for each $i(=$ $1, \ldots, n)$. Especially $\ell$ is said to be purely proper if $\operatorname{Link}\left(k, k_{i_{j}}\right)$ is even for $1 \leq i \neq$ $j \leq n$. If $\ell$ is proper, the Arf invariant, [4], of $\ell$, denoted by $\varphi(\ell)$, is well-defined and so the reduced Arf invariant, denoted by $\bar{\varphi}(\equiv \varphi()-\Phi() \bmod 2)$ of $\ell$ is also defined, where $\Phi(\ell)$ means $\sum_{i=1}^{n} \varphi(k$. $\quad$ ) od 2 .

For two links $\ell\left(\subset R^{3}[0]\right), \ell^{\prime}\left(\subset R^{3}[1]\right), \ell$ and $\ell^{\prime}$ are said to be related if there is a locally flat non-singular orientable surface $F$ of genus 0 in $R^{3}[0,1]$ with $F \cap R^{3}[0]=\ell$ and $F \cap R^{3}[1]=-\ell^{\prime}$.

Lemma 2.1(4]). Tuo links $\ell$ and $\ell^{\prime}$ are proper and related, then $\varphi\left(\ell=\varphi\left(\ell^{\prime}\right)\right.$
For $n$-component links $L, L^{\prime}$, suppose that. $L$ and $L^{\prime}$ are homotopic, namely there is a homotopy $h_{t}$ of $R^{3} \times[0,1]$ such that $h_{0}\left(D=L\right.$ and $h_{1}\left(D=L^{\prime}\right.$. For a sublink $\mathcal{L}$ of $L, \mathcal{L}^{\prime}\left(=h_{1}(\mathcal{L})\right.$ is called the sublink of $L^{\prime}$ corresponding to $\mathcal{L}$ (with respect to $h_{t}$ ).

The following is valid to the classification by self $\sharp$-move and self pass-move of homotopic links.

Lemma 2. 2( [6] Let $L$ and $L^{\prime}$ be homotopic links. Then the following ( 1 ) and (2)hold.
(1) L and $L^{\prime}$ are self $\sharp$-equivalent if and only if $\bar{\varphi}\left(\mathcal{L}=\bar{\varphi}\left(\mathcal{L}^{\prime}\right)\right.$ for any pair of sublinks $\mathcal{L}$ of $L$ and $\mathcal{L}^{\prime}$ of $L^{\prime}$ corresponding to $\mathcal{L}$ which are proper.
$(2) L$ and $L^{\prime}$ are self pass-equivalent if and only if $\varphi\left(\mathcal{L}=\varphi\left(\mathcal{L}^{\prime}\right)\right.$ for any pair of sublinks $\mathcal{L}$ of $L$ and $\mathcal{L}^{\prime}$ of $L^{\prime}$ corresponding to $\mathcal{L}$ which are proper

Theorem 2.3. Let $\mathcal{F}=F_{1} \cup \ldots \cup F_{n}, \mathcal{F}^{\prime}=F_{1}^{\prime} \cup \ldots \cup F_{n}^{\prime}$ be unions of mutually disjoint orientable surfaces of genus 0 with $\partial F_{i}=k_{i 0} \cup \ldots \cup k_{i m_{i}}$ and $\partial F_{i}^{\prime}=$ $k_{i 0}^{\prime} \cup \ldots \cup k_{i m_{i}}^{\prime}$ and let $\ell=\partial \mathcal{F}, L=k_{10} \cup \ldots \cup k_{n 0}$ and $\ell^{\prime}=\partial \mathcal{F}^{\prime}, L^{\prime}=k_{10}^{\prime} \cup \ldots \cup k_{n 0}^{\prime}$.

Suppose that $\ell, \ell^{\prime}$ are homotopic and that $L^{\prime}$ is corresponding to $L$. If $\ell$ is purely proper and $\ell-L, \ell^{\prime}-L^{\prime}$ are self $\sharp$-equivalent, then $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent. Moreover if $\varphi\left(k_{i j}\right)=\varphi\left(k_{i j}^{\prime}\right)$ for each $i=1, \ldots, n, j=1, \ldots, m_{i}$, then. $\ell$ and $\ell^{\prime}$ are self pass-equivalent.

Proof. Since $\ell$ and $\ell^{\prime}$ are homotopic and $\ell$ is purely proper, $\ell^{\prime}$ is also purely proper and so, for any sublinks of $\ell, \ell^{\prime}$, the Arf invariants of these links are defined.

To prove that $\ell$ and $\ell^{\prime}$, which are homotopic, are self $\sharp$-equivalent, it is sufficient. to do that, for any sublinks $\ell_{r}$ of $\ell$ with $r$-component and $\ell_{r}^{\prime}$ of $\ell^{\prime}$ corresponding t.o $\ell_{r}, \bar{\varphi}\left(\ell_{r}\right)=\bar{\varphi}\left(\ell_{r}^{\prime}\right)$ by Lemma $2.2(1)$.

If $\ell_{r}$ is contained in $\ell-L, \ell_{r}^{\prime}$ is also contained in $\ell^{\prime}-L^{\prime}$ and so $\ell_{r}$ and $\ell_{r}^{\prime}$ are self $\sharp$-equivalent, because $\ell-L$ and $\ell^{\prime}-L^{\prime}$ are self $\sharp$ - equivalent. Hence $\bar{\varphi}\left(\ell_{r}\right)=\bar{\varphi}\left(\ell_{r}^{\prime}\right)$ by Lemma 2.2(1).

Therefore we assume that $\ell_{r}$ is not contained in $\ell-L$, namely there are some distinct integers $i_{1}, \ldots, i_{p}$ such that. $\ell_{r}=k_{i_{1} 0} \cup \ldots \cup k_{i_{p} 0} \cup\left(\ell_{r}-L\right)$. To simplify the proof, we may assume that $i_{j}=j$ for $j=1, \ldots, p$. Let us denote $\ell_{r} \cap\left(\cup_{i=1}^{p} \partial F_{i}\right), \ell_{r} \cap$ $\left(\bigcup_{i=p+1}^{n} \partial F_{i}\right)$ and $\left(\ell-\ell_{r}\right) \cap\left(\bigcup_{i=1}^{p} \partial F_{i}\right)$ by $\ell_{r, 0}, \ell_{r, 1}$ and $\mathcal{L}$ respectively. Since $g(\mathcal{F})$, genus of $\mathcal{F}$, is $0, \ell_{r}\left(=\ell_{r, 0} \cup \ell_{r, 1}\right)$ and $\mathcal{L} \cup \ell_{r, 1}(\subset \ell-L)$ are related and proper, $\varphi\left(\ell_{r}\right)=\varphi\left(\mathcal{L} \cup \ell_{r, 1}\right)$ by Lemma 2.1.

Therefore, for a link $\ell_{r}$ of $\ell$,
$\bar{\varphi}\left(\ell_{r}\right) \equiv \varphi\left(\ell_{r}\right)-\Phi\left(\ell_{r}\right) \equiv \varphi\left(\mathcal{L} \cup \ell_{r, 1}\right)-\Phi\left(\ell_{r}\right) \equiv \bar{\varphi}\left(\mathcal{L} \cup \ell_{r, 1}\right)+\Phi\left(\mathcal{L} \cup \ell_{r, 1}\right)-\Phi\left(\ell_{r}\right) \equiv$ $\bar{\varphi}\left(\mathcal{L} \cup \ell_{r, 1}\right)+\Phi(\mathcal{L})+\Phi\left(\ell_{r, 0}\right) \equiv \bar{\varphi}\left(\mathcal{L} \cup \ell_{r, 1}\right)+\Phi\left(\bigcup_{i=1}^{p} \partial F_{i}\right)(\bmod 2)$.

As $g\left(F_{i}\right)=0, k_{i 0}$ is related to $\partial F_{i}-k_{i 0}$ and so $\varphi\left(k_{i 0}\right)=\varphi\left(\partial F_{i}-k_{i 0}\right)$ by Lemma 2.1. Hence,

$$
\Phi\left(\partial F_{i}\right) \equiv \varphi\left(k_{i 0}\right)+\Phi\left(\partial F_{i}-k_{i 0}\right) \equiv \varphi\left(\partial F_{i}-k_{i 0}\right)+\Phi\left(\partial F_{i}-k_{i 0}\right) \equiv \bar{\varphi}\left(\partial F_{i}-k_{i 0}\right)
$$ $(\bmod 2)$.

Therefore we obtain that

$$
\bar{\varphi}\left(\ell_{r}\right) \equiv \bar{\varphi}\left(\mathcal{L} \cup \ell_{r, 1}\right)+\sum_{i=1}^{p} \bar{\varphi}\left(\partial F_{i}-k_{i 0}\right)(\bmod 2)
$$

By the same discussion as above, we obtain that
$\bar{\varphi}\left(\ell_{r}^{\prime}\right) \equiv \bar{\varphi}\left(\mathcal{L}^{\prime} \cup \ell_{r, 1}^{\prime}\right)+\sum_{i=1}^{p} \bar{\varphi}\left(\partial F_{i}^{\prime}-k_{i 0}^{\prime}\right)(\bmod 2)$,
where $\mathcal{L}^{\prime}$ and $\ell_{r, 1}^{\prime}$ are the sublinks of $\ell^{\prime}$ corresponding to $\mathcal{L}$ and $\ell_{r, 1}$ respectively.
Since both $\mathcal{L} \cup \ell_{r, 1}$ and $\partial F_{i}-k_{i 0}$ are contained in $\ell-L$ and both $\mathcal{L}^{\prime} \cup \ell_{r, 1}^{\prime}$ and $\partial F_{i}^{\prime}-k_{i 0}^{\prime}$ are contained in $\ell^{\prime}-L^{\prime}, \mathcal{L} \cup \ell_{r, 1}$ and $\partial F_{i}-k_{i 0}$ are self $\sharp$-equivalent
to $\mathcal{L}^{\prime} \cup \ell_{r, 1}^{\prime}$ and $\partial F_{i}^{\prime}-k_{i 0}^{\prime}$ respectively. Hence $\bar{\varphi}\left(\mathcal{L} \cup \ell_{r, 1}\right)=\bar{\varphi}\left(\mathcal{L}^{\prime} \cup \ell_{r, 1}^{\prime}\right)$ and $\bar{\varphi}\left(\partial F_{i}-k_{i 0}\right)=\bar{\varphi}\left(\partial F_{i}^{\prime}-k_{i 0}^{\prime}\right)$ for each $i$ by Lemma 2.2(1) and so we obtain that $\bar{\varphi}\left(\ell_{r}\right)=\bar{\varphi}\left(\ell_{r}^{\prime}\right)$. Therefore $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent by Lemma 2.2(1).

Moreover if $\varphi\left(k_{i j}\right)=\varphi\left(k_{i j}^{\prime}\right)$ for each $i=1, \ldots, n, j=1, \ldots, m_{i}$, then $\Phi\left(\partial F_{i}-\right.$ $\left.k_{i 0}\right)=\Phi\left(\partial F_{i}^{\prime}-k_{i 0}^{\prime}\right)$. Furthermore as $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent,
$\varphi\left(k_{i 0}\right)=\varphi\left(\partial F_{i}-k_{i 0}\right) \equiv \bar{\varphi}\left(\partial F_{i}-k_{i 0}\right)+\Phi\left(\partial F_{i}-k_{i 0}\right) \equiv \bar{\varphi}\left(\partial F_{i}^{\prime}-k_{i 0}^{\prime}\right)+\Phi\left(\partial F_{i}^{\prime}-\right.$ $\left.k_{i 0}^{\prime}\right) \equiv \varphi\left(k_{i 0}^{\prime}\right)(\bmod 2)$.

Therefore we obtain that $\varphi\left(\ell_{r}\right)=\varphi\left(\ell_{r}^{\prime}\right)$ and so $\ell$ and $\ell^{\prime}$ are self pass-equivalent. by Lemma 2.2(2).

Remark 2.4. In Theorem 2.3, the condition "purely proper" is essential. For example, although the links illustrated in Fig. 6 in [5] satisfy the other conditions except "purely proper" of Theorem 2.3, they are not self $\sharp$-equivalent.

Theorem 2.5. Let $\ell=k_{1} \cup \ldots \cup k_{n}, \ell^{\prime}=k_{1}^{\prime} \cup \ldots \cup k_{n}^{\prime}$ be $n$-component links of genus 0 which are homotopic.

If $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)$ and, for any $(n-2)$-component sublinks $\ell_{n-2}$ of $\ell$ and $\ell_{n-2}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{n-2}, \ell_{n-2}$ and $\ell_{n-2}^{\prime}$ are self $\sharp$-equivalent, then $\ell$ and $\ell^{\prime}$ are self $\#$-equivalent.

Moreover if $\varphi\left(k_{i}\right)=\varphi\left(k_{i}^{\prime}\right)$ for each $i=1, \ldots, n$, then $\ell$ and $\ell^{\prime}$ are self passequivalent.

Proof. Since $g(\ell)=0, \ell$ is related to a trivial knot. Hence if $\ell$ is proper, $\varphi(\ell)=0$ by Lemma 2.1 and so $\bar{\varphi}(\ell)=\Phi(\ell)$. For an ( $n-1$ )-component link $\ell_{n-1}$, say for example $\ell_{n-1}=k_{2} \cup \ldots \cup k_{n}, \ell_{n-1}$ is related to $k_{1}$. Hence if $\ell_{n-1}$ is proper, $\varphi\left(\ell_{n-1}\right)=\varphi\left(k_{1}\right)$ and so $\bar{\varphi}\left(\ell_{n-1}\right)=\Phi(\ell)$. If $\ell$ (or $\ell_{n-1}$ ) is proper, $\ell^{\prime}\left(\right.$ resp. $\left.\ell_{n-1}^{\prime}\right)$ is also proper and the reduced Arf invariant of $\ell$ (resp. $\ell_{n-1}$ ) coincides with that of $\ell^{\prime}$ (resp. $\ell_{n-1}^{\prime}$ ) by the assumption. Hence we obtain that $\ell$ and $\ell^{\prime}$ are self $\sharp$ -equivalent by Lemma 2.2(1).

Moreover if $\varphi\left(k_{i}\right)=\varphi\left(k_{i}^{\prime}\right)$ for each $i$, we obtain that $\varphi\left(\ell_{r}\right)=\varphi\left(\ell_{r}^{\prime}\right)$ for any sublinks $\ell_{r}$ of $\ell$ and $\ell_{r}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{r}$ which are proper. Hence $\ell$ and $\ell^{\prime}$ are self pass-equivalent by Lemma $2.2(2)$.

Corollary 2.6. Let $\ell$ and $\ell^{\prime}$ be those of Theorem 2.5.
(1) Let $\ell$ be a 2- or 3-component link. Then $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent if and only if $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)$.
(2) Let $\ell$ be a 4-component link. Suppose that, for 2-component sublinks $\ell_{2}$ of $\ell$ and $\ell_{2}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{2}$,
(a) each $\ell_{2}$ is not proper (i.e., the linking number of each 2 -component link of $\ell$ is odd) or that
(b) $\bar{\varphi}\left(\ell_{2}\right)=\bar{\varphi}\left(\ell_{2}^{\prime}\right)$ for each $\ell_{2}$ which is proper.

Then $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent if and only if $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)$.

Proof. (1) First we consider the case that $\ell$ is 2 -component. Since $g(\ell)=$ $g\left(\ell^{\prime}\right)=0, k_{1} \approx k_{2}$ and $k_{1}^{\prime} \approx k_{2}^{\prime}$ and so $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)=0$.

The converse is easily obtained by Theorem 2.5 .
Next we consider the case that $\ell$ is 3 -component. If $\ell$ is proper, $\ell^{\prime}$ is also proper and $\varphi(\ell)=\varphi\left(\ell^{\prime}\right)=0$. Hence if $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent, $\Phi(\ell)=$ $\bar{\varphi}(\ell)=\bar{\varphi}\left(\ell^{\prime}\right)=\Phi\left(\ell^{\prime}\right)$. If $\ell$ is not proper, one of $\operatorname{Lin} k\left(k_{i, \ell} \ell-k_{i}\right), 1 \leq i \leq 3$, for example $\operatorname{Link}\left(k_{1}, \ell-k_{1}\right)$, is odd. So one of $\operatorname{Link}\left(k_{1}, k_{2}\right)$ or $\operatorname{Link}\left(k_{1}, k_{3}\right)$ say $\operatorname{Lin} k\left(k_{1}, k_{2}\right)$, is even. Then $\ell_{2}=k_{1} \cup k_{2}$ is proper and related to $k_{3}$. Hence $\varphi\left(\ell_{2}\right)=\varphi\left(k_{3}\right)$ and so $\bar{\varphi}\left(\ell_{2}\right)=\Phi(\ell)$.

For a sublink $\ell_{2}^{\prime}=k_{1}^{\prime} \cup k_{2}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{2}$, we also obtain that $\varphi\left(\ell_{2}^{\prime}\right)=\varphi\left(k_{3}^{\prime}\right)$ and $\bar{\varphi}\left(\ell_{2}^{\prime}\right)=\Phi\left(\ell^{\prime}\right)$.

If $\ell$ and $\ell^{\prime}$ are self $\sharp$ - equivalent, $\ell$ ' 2 and $\ell_{2}^{\prime}$ are also self $\sharp$-equivalent and hence we obtain that $\Phi(\ell)=\bar{\varphi}\left(\ell_{2}\right)=\bar{\varphi}\left(\ell_{2}^{\prime}\right)=\Phi\left(\ell^{\prime}\right)$.

Since a $\sharp$-move is an unknotting operation of knots, [2], the converse is obtained by Theorem 2.5.
(2) Secondly we consider the case that $\ell$ is 4 -component.

If $\Phi(\ell)=\Phi\left(\ell^{\prime}\right), \ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent by Lemma 2.2 and Theorem 2.5.
Next suppose that $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent.
First we consider the case (a). As each $\ell_{2}$ is not proper, any 3 -component link $\ell_{3}$ of $\ell$ is proper and $\ell_{3}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{3}$ is also proper. Since $\ell_{3}$ and $\ell_{3}^{\prime}$ are self $\sharp$-equivalent and $g(\ell)=g\left(\ell^{\prime}\right)=0, \Phi(\ell)=\bar{\varphi}\left(\ell_{3}\right)=\bar{\varphi}\left(\ell_{3}^{\prime}\right)=\Phi\left(\ell^{\prime}\right)$ by Lemma 2.2(1) and the proof of Theorem 2.5.

Secondly we consider the case (b). If $\ell$ is proper, then $\varphi(\ell)=\varphi\left(\ell^{\prime}\right)=0$ and as $\ell . \ell^{\prime}$ are self $\sharp$-equivalent, we obtain that $\Phi(\ell)=\bar{\varphi}(\ell)=\bar{\varphi}\left(\ell^{\prime}\right)=\Phi\left(\ell^{\prime}\right)$. If there is a 3 -component sublink $\ell_{3}$ of $\ell$ which is proper, then a link $\ell_{3}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{3}$ is also proper and as they are self $\sharp$-equivalent, we obtain that $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)$ by the discussion of (a). Therefore we assume that $\ell$ and any 3 -component sublink $\mathcal{L}_{i}\left(=\ell-k_{i}, i=1,2.3,4\right)$ of $\ell$ are not proper. Since $\ell$ is not proper, there is an integer $i$, for example $i=1$, such that $\operatorname{Link}\left(k_{1}, \ell-k_{1}\right)$ is odd and so one of $\operatorname{Link}\left(k_{1}, k_{j}\right)$ is odd for $j=2,3,4$, for example $\operatorname{Lin} k\left(k_{1}, k_{2}\right)$ is odd. Now we consider the following 2 steps.

Step 1. Link $\left(k_{1}, k_{3}\right)$ is odd.
Since $\operatorname{Link}\left(k_{1}, \ell-k_{1}\right)$ is odd, $\operatorname{Link}\left(k_{1}, k_{4}\right)$ is also odd. Hence as $\mathcal{L}_{2}, \mathcal{L}_{3}$, and $\mathcal{L}_{4}$ are not proper, $\operatorname{Link}\left(k_{2}, k_{3}\right), \operatorname{Link}\left(k_{2}, k_{4}\right)$ and $\operatorname{Lin} k\left(k_{3}, k_{4}\right)$ are even. Then $\mathcal{L}_{1}$ is proper which contradicts to that $\mathcal{L}_{1}$ is not proper.

Step 2. $\operatorname{Link}\left(k_{1}, k_{3}\right)$ is even.
Since $\operatorname{Link}\left(k_{1}, \ell-k_{1}\right)$ is odd, $\operatorname{Lin} k\left(k_{1}, k_{4}\right)$ is even. Hence as $\mathcal{L}_{2}$ is not proper, $\operatorname{Link}\left(k_{3}, k_{4}\right)$ is odd and so as $\mathcal{L}_{1}$ is not proper, $\operatorname{Link}\left(k_{2}, k_{3}\right)$ or $\operatorname{Link}\left(k_{2}, k_{4}\right)$ is even, for example $\operatorname{Lin} k\left(k_{2}, k_{4}\right)$ is even. Therefore both $k_{1} \cup k_{3}$ and $k_{2} \cup k_{4}$ are proper and related, $\varphi\left(k_{1} \cup k_{3}\right)=\varphi\left(k_{2} \cup k_{4}\right)$ and so

```
    \(\bar{\varphi}\left(k_{1} \cup k_{3}\right) \equiv \varphi\left(k_{1} \cup k_{3}\right)-\varphi\left(k_{1}\right)-\varphi\left(k_{3}\right) \equiv \varphi\left(k_{2} \cup k_{4}\right)-\varphi\left(k_{1}\right)-\varphi\left(k_{3}\right) \equiv\)
\(\bar{\varphi}\left(k_{2} \cup k_{4}\right)-\Phi(\ell)(\bmod 2)\).
```

By applying the same discussion to $\ell^{\prime}$, we obtain that

$$
\bar{\varphi}\left(k_{1}^{\prime} \cup k_{3}^{\prime}\right) \equiv \bar{\varphi}\left(k_{2}^{\prime} \cup k_{4}^{\prime}\right)-\Phi\left(\ell^{\prime}\right)(\bmod 2) .
$$

Since $k_{1} \cup k_{3}$ and $k_{2} \cup k_{4}$ are self $\sharp$-equivalent to $k_{1}^{\prime} \cup k_{3}^{\prime}$ and $k_{2}^{\prime} \cup k_{4}^{\prime}$ respectively, we obtain that $\Phi(\ell)=\Phi\left(\ell^{\prime}\right)$ by Lemma 2.2(1).

## 3 Special case: Links as the boundaries of mutually disjoint annuli.

In this section, we consider the self $\sharp$ - and self pass -equivalence for links of genus 0 as the boundaries of m utually disjoint annuli. Namely let. $\mathcal{A}=A_{1} \cup \ldots \cup A_{n}$ and $\mathcal{A}^{\prime}=A_{1}^{\prime} \cup \ldots \cup A_{n}^{\prime}$ be unions of mutually disjoint annuli $A_{i}, A_{i}^{\prime}$ with $\partial A_{i}=$ $k_{i} \cup K_{i n} \partial A_{i}^{\prime}=k_{i}^{\prime} \cup K_{i}^{\prime}$ for $i=1, \ldots, n$. Denote $\partial \mathcal{A}, \partial \mathcal{A}^{\prime}$ by $\ell, \ell^{\prime}$ and $\bigcup_{i=1}^{n} k_{i}, \bigcup_{i=1}^{n} k_{i}^{\prime}$ by $L, L^{\prime}$ respectively.

Theorem 3.1. With the above notation, assume that $\ell$ and $\ell^{\prime}$ are homotopr. Then $\ell$ and $\ell^{\prime}$ are self $\sharp$ (or self pass)-equivalent. if and only if $L$ and $L^{\prime}$ are self $\sharp$ (or self pass) -equivalent.

Proof. The necessity is obvious. To prove the sufficiency, it is enough to do that, for any sublinks $\ell_{r}$ of $\ell$ and $\ell_{r}^{\prime}$ of $\ell^{\prime}$ corresponding to $\ell_{r}$ which are proper, $\bar{\varphi}\left(\ell_{r}\right)=\bar{\varphi}\left(\ell_{r}^{\prime}\right)\left(\right.$ resp. $\left.\varphi\left(\ell_{r}\right)=\varphi\left(\ell_{1}^{\prime}.\right)\right)$ by Lemma 2.2(1) (resp. 2.2(2)). The above is obtained by the same discussion to that of proof of Lemma 4 in [5].

Remark 3.2. Under the conditions of Theorem 3.1, it is unnecessary that the condition such that $\boldsymbol{\ell}$ is purely proper in Theorem 2.3.

The definition of self $\Delta$-equivalence, see $[3],[5],[6]$.
Corollary 3.3. Let. $\ell \ell^{\prime} L$ and $L^{\prime}$ be those of Theorem 3.1. If $L$ and $L^{\prime}$ are self $\Delta$-equivalent, then $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent.

Proof. Since $L$ and $L^{\prime}$ are self $\Delta$-equivalent, we obtain that $\ell$ and $\ell^{\prime}$ are quasi self $\Delta$-equivalent by the deformations in Fig. 3 in [5] and hence $\ell$ and $\ell^{\prime}$ are homotopic by $[3]$. Moreover if $L$ and $L^{\prime}$ are self $\Delta$-equivalent, we easily see that, for any sublink $\mathcal{L}$ of $L$ and that of $L^{\prime}$ corresponding to $\mathcal{L}$ which are proper, their reduced Arf invariants coincide and so $L$ and $L^{\prime}$ are self $\sharp$-equivalent.

Therefore $\ell$ and $\ell^{\prime}$ are self $\sharp$-equivalent by Theorem 3.1.
Corollary 3.3 is an extention of Lemma 4 in [5].
It is well-known that two 2-component links are homotopic if and only if their linking numbers coincide, [1]. Therefore we obtain the following by Lemma 2.2(1) and Theorem 3.1.

Corollary 3.4. Let $n=2$ in Theorem 3.1 and $s=\operatorname{Link}\left(k_{1}, k_{2}\right)$
(1) If $s$ is odd, $\ell, \ell^{\prime}$ are self $\sharp$-equivalent.
(2) If $s$ is even, then $\ell$ and $\ell^{\prime}$ are $\sharp$-equivalent. if and only if $\bar{\varphi}(L)=\bar{\varphi}\left(L^{\prime}\right)$.

## References

[1] J.W. Milnor: Link groups, Ann. of Math. 59(1954), 177-195.
[2] H. Murakami: Some metrics on classical knots, Math. Ann. 270(1985),3545.
[3] Y. Nakanishi and T. Shibuya: Link homotopy and quasi self delta-equivalence for links, J. of Knot Theory and its Ramification, 9 (2000), 683-691.
[4] R.A. Robertello: An invariant of knot cobordism, Comm. Pure and Appl. Math. 18(1965), 543-555.
[5] T. Shibuya: On local moves for links of genus zero, Memo. Osaka Insti. Tech., 47(2002), 31-39.
[6] T. Shibuya and A. Yasuhara: Classification of links up to self pass-move, J. Math. Soc. Japan, 55(2003), to appear.

