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Abstract

In the previous paper, [5], we studied that the links of genus 0 were self # -or self
pass-equivalent to trivial links under some conditions.
In this paper, we study that two homotopic links of genus 0 are self # -or self

pass-equivalent under what kinds of conditions.
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1 Introduction.

In the previous paper,[5], we studied that the links of genus 0 were self - or self
pass-equivalent to trivial links under some conditions. The definitions of self §-
and self pass-equivalence of links, see (3], (5], 6]

In this paper, we study that two homotopic links of genus 0 are self - or self
pass-equivalent under what kind of conditions.

We deal the self fi- and self pass-equivalence for homotopic links as the bound-
aries of surfaces of genus 0 in section 2 and we do for links as the boundaries of
mutually disjoint annuli and prove Theorems 2.3, 2.5 and 3.1 respectively.

As applications of these theorems, we attempt the classifications of 2-,3- and
4-component homotopic links of genus 0 and show Corollaries 2.6 and 3.4.

2 GGeneral case: Links as the boundaries of sur-
faces of genus 0.

An n-component link ¢ = k; U.. Uk, in R® is said to be proper if the linking
number, denoted by Link( ki — ki)( =%, Link( ki, k;)),is even for each i( =
1,..,n). Especially ¢ is said to be purely proper if Link( k. k) is even for 1 <7 #
j < n. If ¢ is proper, the Arf invariant, [4], of ¢, denoted by ¢(¥), is well-defined
and so the reduced Arf invariant, denoted by @( ¥(= ¢( § — ®( § mod 2) of ¢ is
also defined, where ®( £)means 37, ¢( k mod 2.

For two links ¢( CR3[0]),¢( CR3[1]),¢ and ¢ are said to be related if there
is a locally flat non-singular orientable surface F' of genus 0 in R*[0,1] with
FNR}0]=¢and FNR3}1] = —¢.

Lemma 2. 1( 4]). Two links ¢ and ¢' are proper and related, then o( ¥ = ¢( ¢')

For n-component. links L, L', suppose that L and L’ are homotopic, namely
there is a homotopy h; of R® x [0,1] such that ho( Iy = L and hy( ) = L'. For a
sublink £ of L, L'( =h,( £) is called the sublink of L’ corresponding to L ( wth
respect to hy).

The following is valid to the classification by self ff-move and self pass-move
of homotopic links.

Lemma 2. 2( (] Let L and L' be homotopic links. Then the following ( 1)
and ( 2)hold.

(1) L and L' are self f-equivalent if and only if ¢( § = @( L')for any pair of
sublinks £ of L and L' of L' corresponding to L which are proper.

( 2)L and L' are self pass-equivalent if and only if o( 4 = ¢( L')for any pair
of sublinks L of L and L' of L' corresponding to L which are proper
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Theorem 2.3. Let F = FLU...UF,,F' = F{U..UF! be unions of mutually
disjoint orientable surfaces of genus 0 with OF; = kig U ... U ki, and OF! =
i U oo Uk, and let £ = OF | L = k1oU...Ukno and £ = 0F' | L' = KyU...Uk.,.

Suppose that £,¢ are homotopic and that L' is corresponding to L. If
¢ 1s purely proper and ¢ — L,¢' — L' are self §-equivalent, then ¢ and ¢ are self

i-equivalent. Moreover if (kij) = @(ki;) for each i =1,...n,5 = 1,...,m,, then
¢ and ¢ are self pass-equivalent.

Proof. Since ¢ and ¢ are homotopic and ¢ is purely proper, ¢ is also purely
proper and so, for any sublinks of ¢, #', the Arf invariants of these links are defined.

To prove that £ and ¢, which are homotopic, are self j-equivalent, it is sufficient
to do that, for any sublinks Z, of £ with r-component and ¢ of ¢ corresponding
to 4., ¢(¢,) = ¢(£.) by Lemma 2.2(1).

It £, is contained in /— L, £, is also contained in ¢ — L' and so ¢, and £, are self
f-equivalent, because £ — L and ¢ — L' are self §- equivalent. Hence @(4.) = @(¢.)
by Lemma 2.2(1).

Therefore we assume that ¢, is not contained in ¢ — L, namely there are some
distinct integers ¢, ...,%, such that £, = k; oU...U Ki,oU (¢, — L). To simplify the
proof, we may assume that i; = j for j = 1, ..., p. Let us denote £,N(f_, OF;), &N
(Uizpy1 0F) and (£ — &) N (U2, OF;) by 4,0, 4r1 and L respectively. Since g(F),
genus of F, is 0, 4,(= 4,0 U ¥1) and L U 4,1(C ¢ — L) are related and proper,
o(4) = (L U¥,1) by Lemma 2.1.

Therefore, for a link ¢, of £,

Plr) = pllr) = (&) = p(LUG) = O(8) = G(LUG) + R(LUL,) — B(6) =
GLU L) + (L) + B(lrg) = G(LU L) + O(UF-, OF,) (mod 2).

As g(F;) = 0, ko is related to OF; — k;o and so ¢(kio) = ¢(0F; — kip) by Lemma
2.1. Hence,

D(0F;) = (ko) + Q(OF; — kio) = @(OFi —kio) + (0L —kio) = ¢(0F: — kio)
(mod 2).

Therefore we obtain that.

¢(¢r)

Hl

P(LUL1) + T8 ¢(OF; — ki) (mod 2).
By the same discussion as above, we obtain that
B(E) = G(L UL, + 57, (OF! — k) (mod 2),
where £" and £, ; are the sublinks of #' corresponding to £ and ¢,,; respectively.

Since both LU /,; and OF; — kjy are contained in ¢-L and both £" U £, ; and
OF{ — kK, are contained in ¢ — L', L U4, and 0F; — ki are self ﬁequlvalent
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to £'U £, and OF] — ki respectively. Hence ¢(L U ¢,,) = (L' UL, ) and
@(OF; — kio) = @(OF] — kjp) for each 4 by Lemma 2.2(1) and so we obtain that
@(€,) = @(£.). Therefore ¢ and ¢ are self ff -equivalent by Lemma 2.2(1).

Moreover if ¢(kij) = @(k;;) for each i = 1,...,n,j = 1,...,m;, then ®(OF; —
kio) = ®(OF] — kly). Furthermore as £ and ¢’ are self f-equivalent,

(ki) = @(OF; — kig) = B(OF; — kio) + B(OF; — ko) = G(OF! — ko) + (OF! —
kio) = w(kip) (mod 2).

Therefore we obtain that ¢(¢,) = ¢(¢.) and so ¢ and ¢ are self pass-equivalent
by Lemma 2.2(2).

Remark 2.4. In Theorem 2.3, the condition ”purely proper” is essential. For
example, although the links illustrated in Fig. 6 in [5] satisfy the other conditions
except "purely proper” of Theorem 2.3, they are not self §-equivalent.

Theorem 2.5. Let { =k U...Uk,, ¢ =k U..Uk] ben -component links
of genus O which are homotopic.

If ®(¢) = ®(¥') and, for any (n — 2) -component sublinks £,_q of ¢ and £, _,
of ¢ corresponding to €n_g,ln_o and £, _, are self § -equivalent, then ¢ and ¢ are
self §-equivalent.

Moreover if (ki) = @(k}) for each i = 1,....n, then ¢ and £' are self pass-

equivalent.

Proof. Since g(¢) = 0,7 is related to a trivial knot. Hence if ¢ is proper,
¢(¢) = 0 by Lemma 2.1 and so ¢(¢) = ®(¢). For an (n — 1)-component link 4,_1,
say for example ¢, 1 = ko U...UKk,,¥¢,_; is related to k;. Hence if ¢,_, is proper,
@(ln_1) = (k1) and so @(4,_1) = ®(¢). If ¢ (or €,_1) is proper, ¢ (resp. #,_;)
is also proper and the reduced Arf invariant of ¢ (resp. #,_;) coincides with that
of ¢ (resp. f£,_;) by the assumption. Hence we obtain that ¢ and ¢ are self {
-equivalent by Lemma 2.2(1).

Moreover if ¢(k;) = @(k!) for each 7, we obtain that ¢(4,) = ¢(¢.) for any
sublinks 4, of £ and ¢, of ¢' corresponding to ¢, which are proper. Hence ¢ and ¢
are self pass-equivalent by Lemma 2.2(2).

Corollary 2.6. Let ¢ and ¢' be those of Theorem 2.5.

(1) Let £ be a 2- or 3-component link. Then £ and ¢ are self {-equivalent if
and only if ®(¢) = ®(¢).

(2) Let ¢ be a 4-component link. Suppose that, for 2-component sublinks £ of
¢ and €, of €' corresponding to £y,

(a) each £y is not proper (i.e., the linking number of each 2-component link of
¢ is odd) or that

(b) @(£2) = @(¢y) for each €y which 1s proper.
Then £ and ¥ are self § -equivalent if and only if ®(¢) = ().
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Proof. (1) First we consider the case that ¢ is 2-component. Since g(¢) =
g(#') = 0,k; = ky and k] = kj and so ®(¢) = ®(¢) = 0.

The converse is easily obtained by Theorem 2.5.

Next we consider the case that ¢ is 3-component. If ¢ is proper, ¢ is also
proper and p(¢) = ¢(#) = 0. Hence if £ and ¢ are self f-equivalent, ®(¢) =
@(¢) = @(¢') = ®(¢). If £ is not proper, one of Link(k; ¢ — k;),1 < i < 3,
for example Link(ky,¢ — k1), is odd. So one of Link(ky,k2) or Link(ky, ks) say
Link(k1,ks), is even. Then ¢y = k; U ky is proper and related to ks. Hence
plls) = lka) and so p(£2) = D)

For a sublink ¢, = A} Uk} of ¢ corresponding to /¢, we also obtain that
o8,) = oK) and 3(6) = B(¢),

If £ and £ are self §- equivalent, /- and ¢, are also self §-equivalent and hence
we obtain that ®(¢) = @(fz) = @(¢y) = ®(¢).

Since a f-move is an unknotting operation of knots,[2], the converse is obtained
by Theorem 2.5.

(2) Secondly we consider the case that ¢ is 4-component.

If ®(¢) = ®(¢'),¢ and ¢ are self f-equivalent by Lemma 2.2 and Theorem 2.5.

Next suppose that ¢ and ¢ are self §-equivalent.

First we consider the case (a). As each ¢; is not proper, any 3-component.
link 43 of ¢ is proper and £5 of ¢' corresponding to ¢3 is also proper. Since ¢3 and
¢, are self f-equivalent and g(¢) = g(¢') = 0, ®(¢) = @(43) = @(¢y) = D(¢) by
Lemma 2.2(1) and the proof of Theorem 2.5.

Secondly we consider the case (b). If ¢ is proper, then p(¢) = ¢(¢') = 0 and as
¢.¢ are self f-equivalent, we obtain that ®(¢) = @(¢) = ¢(¢') = ®(¢). If there is a
3-component sublink ¢3 of ¢ which is proper, then a link #; of ¢ corresponding to
/3 is also proper and as they are self f-equivalent, we obtain that ®(¢) = ®(¢') by
the discussion of (a). Therefore we assume that ¢ and any 3-component sublink
Li(= ¢ — kit = 1,2.3,4) of ¢ are not proper. Since ¢ is not proper, there is
an integer i, for example + = 1, such that Link(k;,£ — k1) is odd and so one
of Link(ky,k;) is odd for j = 2,3,4, for example Link (ki, k2) is odd. Now we

consider the following 2 steps.

Step 1. Link(ky, k3)is odd.
Since Link(ky, € — k) is odd, Link(k;,k,) is also odd. Hence as L3, L3, and
Ly are not proper, Link(ky,k3), Link(kz,kq4)and Link(ks, ky) are even. Then £,

is proper which contradicts to that £; is not proper.

Step 2. Link(k;, k3) is even.

Since Link(k1,¢— ky) is odd, Link(kq, ks) is even. Hence as L, is not proper,
Link(ks, k) is odd and so as £ is not proper, Link(ky, k) or Link(kg, ks) is
even, for example Link(ky,ky) is even. Therefore both ky U ks and ky U ky are
proper and related, p(k; Uk3) = ¢(ky U k4) and so

— 51 —
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Gk U ks) = (k1 U ks) — (k1) — @(ks) = p(ky U k) — (k1) — o(ks) =
(ks U ks) — ®(£) (mod 2).

By applying the same discussion to ¢, we obtain that
B(K; U KS) = (k) U KL) — @(£) (mod 2).

Since ky Uk and ko Uk, are self f-equivalent to k] Uk; and k3 UK) respectively,
we obtain that ®(¢) = ®(#) by Lemma 2.2(1).

3 Special case: Links as the boundaries of mu-
tually disjoint annuli.

In this section, we consider the self - and self pass -equivalence for links of genus
0 as the boundaries of m utually disjoint annuli. Namely let A = A; U ...U A4,
and A’ = A} U ... U A}, be unions of mutually disjoint annuli A,, A} with 04; =
kUK;0A, = kUK for i = 1,...,n. Denote 04,04’ by ¢,¢ and U, ki, UL, k
by L, L' respectively.

Theorem 3.1. With the above notation, assume that ¢ and € are homotopuc
Then ¢ and ¢ are self §f (or self pass)-equivalent if and only if L and L' are self
f (or self pass) -equivalent.

Proof. The necessity is obvious. To prove the sufficiency, it is enough to do
that, for any sublinks ¢, of ¢ and £, of ¢ corresponding to ¢, which are proper,
@(4,) = @(£.) (resp. ¢(4) = (€ .))by Lemma 2.2(1) (resp. 2.2(2)). The above
is obtained by the same discussion to that of proof of Lemma 4 in [5)].

Remark 3.2. Under the conditions of Theorem 3.1, it is unnecessary that
the condition such that ¢ is purely proper in Theorem 2.3.

The definition of self A-equivalence, see [3],[5],[6].

Corollary 3.3. Let ¢ ¢ L and L be those of Theorem 3.1. If L and L' are
self A-equivalent, then ¢ and ¢ are self f-equivalent.

Proof. Since L and L' are self A-equivalent, we obtain that ¢ and ¢ are quasi
self A-equivalent by the deformations in Fig. 3 in [5] and hence ¢ and ¢ are
homotopic by [3]. Moreover if L and L' are self A -equivalent, we easily see that,
for any sublink £ of L and that of L' corresponding to £ which are proper, their
reduced Arf invariants coincide and so L and L’ are self f-equivalent.
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Therefore ¢ and ¢ are self § -equivalent by Theorem 3.1.
Corollary 3.3 is an extention of Lemma 4 in [5].

It is well-known that two 2-component links are homotopic if and only if their
linking numbers coincide, [1]. Therefore we obtain the following by Lemma 2.2(1)
and Theorem 3.1.

Corollary 3.4. Let n=2 in Theorem 3.1 and s = Link(k;, k,)
(1) If s is odd, ¢, €' are self §-equivalent.
(2) If s is even, then € and ¢' are f-equivalent if and only if ¢(L) = ¢(L").
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