Memoirs of the Osaka Institute
of Technology, Series A
Vol.48,No.1(2003) pp.31~46

A Design Methodology for Re-Configurable MPU for an
Embedded System and Software on an FPGA%
by
Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

Department of Electronics, Information and Communication Engineering, Faculty of Engineering
(Manuscript received May 29, 2003)

Abstract

FPGA (Field Programmable Gate Array) is an essential device to design of hardware at
present. Ways of applying FPGAs are studied actively for system design problems. The
problems are on design methods for large scale and speed-up. One of the design methods
is SoC (System on a Chip) that realizes to implement all functions of a system to a chip.
To realize SoC efficiently, IP (Intellectual property) is very important and is developed
for re-use of hardware. Many MPUs (Micro Processing Unit) are developed as IPs. However,
most of the MPUs at present have too high specifications and too large scales, as applying
to embedded systems. Furthermore, embedded MPUs require functions to execute real-time
application program. Then we propose a flexible and small scale MPU and it’s design method.
This paper is shown our proposed design method with “specifications description language”
and the examples to apply the design method, and indicates problems and reasons to
implement processors in an FPGA.

* This paper was presented in ITC-CSCC2002 (July 16-19, 2002 in Phuket, Thailand) (The 2002 International
Technical Conference on Circuits/Systems, Computers and Communications.)
** Major in Electrical and Electronics Engineering, Graduate Course of Engineering.

2 Hideo ARAKI¥x, Toshiro KUTSUWA and Katsumi HARASHIMA

1. Introduction

At present, researches for applying FPGAs are very active. Furthermore the possibility
of applying FPGAs is expanded with expansion of FPGAs capacity. The FPGA is applied for
rapid-proto-typing, re-configurable-system and simplification of debugging. To realize
a rapid-prototyping, the FPGA is used instead of a VLSI (Very Large Scale
Integrated-circuit). In this case, designers decide the behavior of the functions, and
build functions. M Gschwind et al. have researched to prototype a MPU using FPGA).
In the paper, they have built MIPS RISC processor described by VHDL for an FPGA and a
VLSI. B. K. Tan et al. have researched for re-configurable digital signal processor for
ASIC® (Application Specific Integrated Circuit). S. Honda et al. have researched for
a co-design on device and device-driver using a “SpecC”®. The researches have following
branches: “Description”, “Synthesize”, “Design Device” and so on. Most of the researches
applying FPGA are for rapid-prototyping en a VLSI. However, it is difficult to apply
the results of the researches for the embedded system, because these processors are too
large.

In addition to them, some MPUs are produced by FPGA venders. The MPUs are able to modify
a little only. Ability of the modifications is very important to fit for embedded systems
which have a little hard ware resource. We think that a MPU which is full and free
synthesis is the most suitable for embedded systems. Therefore a MPU to fit an embedded
systen needs the following characters; “Easy to modify a structure”, “Easy to supplement
functions” and “Small scale”. To realize the MPU with the characters, we research a design
method and a MPU.

At the first, we propose an “Implementing Style” to build a system with an FPGA. Several
approaches for the implementing styles are tried as various applications.. One of the
implementing styles is to include a MPU in an FPGA. However, some approaches are tried
and applied. Figure 1 illustrates the relations of an FPGA, functions and implemented
nethod.
1)FPGA has a MPU as a hardware macro which cannot be changed, and other devices are

connected on a PCB (Printed Circuit Board) (Fig.1 (a)).
2)FPGA has only ASIC functions. MPU and other devices are connected on a PCB. We can

change the functions on an FPGA (Fig.l (b)).
3)FPGA has a MPU as a software macro and ASIC functions. The MPU can be changed a little

(Fig.1 (c)).
4)FPGA has a MPU and other devices as description with various functions. The MPU can

be changed in full scale (Fig.1 (d)).

A Design Methodology for Re-Configurable MPU for an Embedded 3
System and Software on an FPGA

PCB ’ PCB
FPGA FPGA
MPU ey
MPU | —={ASIC I ASIC
1 : [Memory|
Memory
@ ®)
4
PCB
PCB FPGA(SOPC)
FPGA
MPU |ASIC
MPU HASIC >
1 Memory
Memory e———tExtcrnal BUS
SOPC = System On
a Programmable Chip
© @)

Fig.1 Difference of implementation.

We try to the 4th style (Fig.1 (d)), because a MPU on the style is most useful for
system modifications. To apply the MPU for embedded systems, there are some advantages
and some defects.

* We can build the most suitable MPU for the specified application. (advantage)
+ We can use the hardware efficiently. (advantage)
- We can get a necessary speed. (advantage)

« To build the MPU is very difficult. (defect)
+ No software development tool is exploited for the MPU. (defect)

To conquer the defects, we propose a design style with that specification description
language expresses a MPU on an FPGA. The proposing includes following that.
- Describe the MPU and the other hardware by a specification description language.
- Describe the software for the MPU by the specification description language.
- Improve the system re-configuration by these descriptions.

2.Design Methodology
An evolution of an FPGA gives an FPGA a logic-cell (Basic Composition of an FPGA) based

4 Hideo ARAKI*x, Toshiro KUTSUWA and Ka_tsumi HARASHIMA

on SRAM technology. Furthermore, logic-cells for memory and random logic are mounted
separately. An effective method of the characters for the separate logic-cells is that
functional implementation is executed by not hardware-logic but software-logic. However,
the implementation of the functions with a critical time restriction is executed
effectively by hardware-logic than software-logic. Our proposing design method is
applied to aim to use resources of the FPGA with random-logics and memory-cells
effectively.

Descriptions about specifications decide the way of implementation by hardware or
software. By using a specification description language, we can change easily the way,
because the language has high flexibility to imprement them. To use the language is a
good technique for designing a re-configurable system with an FPGA, because there are
often several changes of specifications and requirement at designing a small-scale
embedded system. Qur proposing design method implements a re-configurable MPU in the
FPGA, and applies it as a programmable controller. The MPU has structural modules, and
the modules are able to change independently. The structure of the FPGA is efficiently
and does not lose flexibility.

Furthermore, the FPGA has a some functional unit as a module which has a same style
with the MPU. Figure.l (d) shows the unit as a ASIC. The MPU and the ASIC communicate
by special registers in the MPU each other. The register has asynchronous single
direction ports, and is like a FIF0 (First In First Out) buffer. The MPU accedes to the
ASIC accesses to the register without a bus-arbitration. In addition to that, the ASIC
can connect to internal bus of MPU by necessity. Our method can select a communicating
way from the MPU to the ASIC, considering with a tradeoff between forwarding speed and
transaction speed.

To convert software and hardware efficiently each other, applying the specification
description language and the style of the module’s description are very important.
Furthermore, the MPU can be modified in our proposed design method. The MPU that is
re-configurable structure and expressed by specification description language has
following characteristics.
1)By modifying a command decoder block, the hardware that is specified for applications

can be controlled by an additional command from software.
2)By adding some ALU blocks, the MPU can execute parallel calculations.
3)The MPU can have a specific calculation unit by modifying an ALU.
4)External units can access the register file directly.
5)External units can access the program counter unit directly.

A Design Methodology for Re-Configurable MPU for an Embedded 5
System and Software on an FPGA

The characteristics of the MPU can realize an easy and quick design for a flexible
system. Besides, the MPU can be applied and extended more flexibly than other MPUs that
are distributed as an IP. A description of program codes for the MPU can be modified
uniformly, because the codes and the MPU are written by the same specification
description language. By memorizing the codes on the FPGA, only one configuration file
of the FPGA is necessary for the system. Therefore, only one controller can be found
on the system.

Design flow Design flow
System design System design
(Purpose) (Purpose)
(System required) (System required)
A *
Behavior
Hardware Software 7
SpecC
C or other
HDL language PN
HDL| C
FPGA ROM FPGA
(ROM)
a) Usual design flow. b) Proposed design flow.

Fig. 2 Design flow.

We propose to use “SpecC” which is a specification description language to realize
this method®. By applying “SpecC”, a design of the system can be changed by the request
as a minimum modification. “SpecC” is based on “ANSI C language”. To evaluate a behavior
of the system, we can use “C language code” that is generated from “SpecC language code”.
Figure 2 illustrates difference between a usual design flow and our proposing design
flow. The proposal can ensure the flexible co-design of hardware and software. The
flexibility is very important to design a re-configurable system. The codes that are
described in “SpecC” for the re-configurable system are divided to HDL (Hardware
Description Language) codes and C program codes. Each source codes generate each object
file by each compiler. Finally, an object file for programming to FPGA is generated from
all object files.

6 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

We develop a computer simulator based on this design technique, and evaluate the
system’s behaviors and the MPU’s efficiency in experiments with the simulator.

3.Experiments and Results
3.1 Build the MPU and Application System

At the first, we evaluate about the description style. We design an experiment system
with an 8Bit MPU and a motor control unit, and generate an experiment system simulator
from the description.

The experiment system performs following operations.

(1) A user specifies a speed from general-purpose input port on the FPGA.

(2) The speed is detected by measuring electromotive force of the motor.

(3) The control of the motor is performed so that specified speed and a measuring speed
is equal to the specific speed.

(4) The motor speed is controlled as a motion with constant angle acceleration.

Our MPU has suitable design configuring to FPGA, and its inside is composed of function
modules. The MPU has following function modules; Command-Decoder, Command-Controller,
Register File, Program Counter, Stack Unit, ALU (Arithmetic Logic Unit), Command Bus,
and Data Bus. Figure 3 illustrates a block diagram in the MPU. Figure 4 illustrates a
block diagram as function modules.

- Command Decoder reads a program code on a Program Memory at the address indicated
by Program Counter through the Command Bus.

- Command Decoder analyzes the program code.

- Command Controller controls the other modules according to instruction of Command

Decoder.

- Register File write a datum on Data Bus to a register, or output a datum on a register
to Data Bus, according to Command Controller.
- Program Counter increases a value in PC-register (Program Counter register), or sets

a value on Data Bus to PC-register, according to Command Controller.

- A stack unit in Program Counter records the value of PC-register according to Command

Controller.

- ALU outputs a calculated value to Data Bus.

- Data Bus is connected to Register File, ALU, and Program Counter. These modules
exchange values through the Data Bus.

- The motor control unit which is in the ASIC controls speed by PWM. This control unit
is connected to Register File of the MPU, and it controls a motor in non-synchronism.

A Design Methodology for Re-Configurable MPU for an Embedded 7
System and Software on an FPGA

The MPU can access the control unit through three registers as Speed Control Register,
Timer Register and Setup Register. A value written into the registers is reflected
to a controller on real time except for the timer register. The motor control unit
has an 8bit input port. A value of the input port is reflected to the register of the
MPU on real time.
- Additionally, MPU has general-purpose 1/0 ports of 8bit. The 1/0 ports are connected
to the register of MPU directly.

BUS Width
{Configurable)
— Program
Counter
v @
Register
Program [T File
Memory () =——g=P! PWM
- C
L 2 _ 4 3
Command Selector
Register f— {MUX)
| AD
* laput
Comnmnd -
o] ARegister
Decoder (Configurable) ALY
Command [~
Controller

Fig. 3 MPU block for experiment.

Main MPU
Behavior Behavior
(Start)
Register
File
RESET Reset event Behavior
> Controller
Behavior - W Register
Behavior

System Clock event)| I B :LU I
N Clock ehavior
Behavior Selector I
Behavior

SRAM Command
B Behavior Program decoder
—) - Behavior

Program
Counter
Behavior

Fig. 4 Function modules in MPU.

8 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

Next, implementing software to the system is shown. Figure 5 shows the general flow

chart for the software. The software’s movements are as follows.

(1) All registers are initialized.

(2) The MPU reads the value of specified speed (Ws) from general-purpose 1/0, and sets
a value to the MPU’s register.

(3) The MPU reads the value of detected speed from motor control unit, and sets a value
to the MPU’s register (Wd).

(4) PWM is controlled by the following rules.

In case of (Wd-Ws) > 0 (acceleration)
(Wd-Ws) >=8 (angular acceleration increase by 1)
(Wd-Ws) <8 (angular acceleration increase by (Wd-Ws)/2)

In case of (Wd-Ws) = 0 (fixed speed): No action.

In case of (Wd-Ws) < 0 (deceleration)
(Wd-Ws) >-8 (angular acceleration decrease by (Wd-Ws)/2)
(Wd-Ws) <=-8 (angular acceleration decrease by 1)

(5) MPU calculates the angular acceleration (Aw).

(6) MPU writes the value of (Wd+Aw) to PWM register (Wo).

(7) Repeat (2) to (6).

Set Control
Speed(We)
I

ad Detect]
Speed(Wd)

Wo = Wd+Aw

Fig. 5 Control program chart for experiment.

A Design Methodology for Re-Configurable MPU for an Embedded 9
Systen and Software on an FPGA

[Behavior Main(){
MPU Bmpu(..); ehavior Program(){
SRAM Bprogmemy(...) int main(void){
- unsigned char ucWi, ucWd , ucWo;
int main(void){ short int siDef , siAw;
par{
Bmpu.main(); while(true){
Bprogmem(); ucWi=read_reg(REG10);
siDef = (short mt)Wd - ..
}
} write_reg(REG11,ucWo);
3 a) root behavior | }
£

[Behavior MPU(..){
COM_DEC Bcomdec(...);
ALU Balu(...)

unsigned short int usiPC;
event eSYSCLK;

int main(void){
par{
Bcomdec.main();
Balu.main{);

}
P; b) MPU behavior ¢) program behavior

Main & SUB behavior (SpecC)

Fig. 6 Description examples of behavior.

A code for a system simulator is implemented according to the specifications of the
hardware, the software and the MPU. Figure 7 illustrates a flow of generation and

execution for the simulator from the codes.

SpecC
source code

SpecC

compiler

Object code
Transfer to
Program
memory

A

Execute

Simulation

Hardware
simulator

C compiler execute code

For MPU

Object code
For MPU
HALT

Making object files flow
(Compile flow)

Simulation flow

Fig. 7 Simulation executing flow.

10 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

All of the modules are written for “SpecC reference compiler V1.2”. The compiler
generates a “C++ source code” from “SpecC source code”. Next, “g++ (GNU C++ compiler)”
generates an executable simulator code from the “C++ code”. The simulator starts from
the main function of a main behavior. Usually “g++” compiler compiles the C++ code to A
generate a simulation object code. However, we cut off the codes that are parts of the
progran for the MPU. The codes are generated from the description part Fig.6 (c). The
codes for the program are compiled to generate object codes for the MPU. The other codes
are compiled to generate simulator codes. The simulator loads an object code for the
MPU, and executes the code. To build a programming file for an FPGA, the object codes
for the MPU merge these files. The two codes are independent each other and there are
no problems for compiling and executing. At the “SpecC”, a description of a behavior
is closed, and it is easy to make software a capsule.

The simulator behaves hardware operations, and executes the software code by the MPU
in the simulator. The hardware has some independence modules and the modules are executed
independently on the simulator. The modules look like behavior level design styles.
However, they are described with RTL, and act synchronously and concurrently. The
synchronous signals and data paths go through the root behavior that means the top-
level description of the behaviors. When the modules are added or changed, the
description of the root behavior will be modified about controls for the modules.

Figure 8 illustrates simulator outputs on the application system. The outputs have
following messages; “program memory output”, “Executing program counter register value”,
“Executing code”, “Selected register No. and the register’s value”. Figure 9 shows the
simulation results for an experimental application program.

e

== 14 (a01) ==
a0l = a00+1(1)

Register READ : REG[1]=b6b
_-RAMOUT (380)

== 15 (380) ==

380 = 380+0(80)

Register READ : REG[0]=0
_-Register Write : REG[O]=ff
RAMOUT (a80)

== 16 (a80) ==

a80 = a80+0(80)

Register READ : REG[O]=ff
_~Register Write : REG[0]=0
RAMOIITINY

Fig. 8 Executing the Simulator with SpecC.

A Design Methodology for Re-Configurable MPU for an Embedded 11
System and Software on an FPGA

250 ' - 10
200 5

A\

150 g Ve |

100 % Rl WER
50 lj- -5
\

Verocity
Acceleratior

0 lIIllIIIIIIIIIIIIIIlI|lIIIIIIllIIIIlIIIIIIlllllll _10
L S T~ S Vo N Y B oY e L
= N n on < <
Time ——W
- = = =AW

Fig. 9 Simulation output chart.

3.2 Differences of Description about Modifying MPU on “SpecC” and “VHDL”

We compare the styles about the description of the MPU on the “SpecC” and “VHDL”. Each
MPU has the same functions.

Before the experiments, differences of the language are expressed. VHDL description
of hardware system with software is very hard, because VHDL has no function and no
structure to describe the software. Accordingly, to describe the software by VHDL is
too difficult and it is not good way. At the following explanation, we do not compare
the descriptive style for software, and compare only re-configurable MPU description.

To evaluate the descriptive styles, we compare our proposed Spec-C-MPU with VHDL-
MPU. VHDL-MPU is composed of some component blocks described by VHDL. On our proposed
Spec-C-MPU, all control signals and data path go through a root behavior for re-
configurable MPU. All architectures are described through root architecture of VHDL as
well. To evaluate size of an effort, an ALU is supplied for each MPU. Table 1 shows the
differences of the MPUs. For this addition, the codes of SpecC increase about 200Bytes.
The codes of VHDL increase about 400Bytes as well. Further, the number of parts is needed
to change are 3 parts for SpecC, and 8 parts for VHDL. In Spec-C-MPU, adding functions
can change main behavior. The description of SpecC is abstractly and we can change smaller
than VHDL.

Table 1: Increase of description for adding ALU.

SpecC- MPU VHDL-MPU Note
. All line number
Line 257 152 X
of files.
Size +200byte +400byte To add ALU
Points.
Change 3 8 (Not Line)

— 41—

12 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

3.3 Differences of Implementation for Modifying MPU ‘s Data Bus Width on an FPGA

At first, an FPGA should be decided. In this experiment, EP1K10 that is ACEXIK series
distributed by ALTERA and a design tool that is ‘MAX+Plus2” distributed by ALTERA are
selected to implement and evaluate the MPU on an FPGA. The one of ACEXIK’s merits is
to have logic-cells and memory-cells independently. Best implementation can be realized
by applying the merits. Figure 10 shows the map of the basic design MPU in the FPGA
(EP1K10). The MPU has 16bits fixed command length and 8bits data length.

Fig. 10 Implement Basic MPU on FPGA (EP1K10).

Figure 11 shows a timing chart by the simulator. There are imner nodes for
program-code-bus, but there is no input node, because the program codes for the MPU are
stored in the memory-cell on the FPGA. The program codes for the MPU are included in
a POF (programmer object file). The POF configures memory-cells and logic-cells of the

FPGA in a same time.

A Design Methodology for Re-Configurable MPU for an Embedded 13
System and Software on an FPGA

s i000ns 1200ns 1400ns 1600ns 1800ns 2000 200ns 240003

Fig. 11 Simulator results on MAX+Plus2 (EP1K10).

Next, The MPU is modified to evaluate differences of the consumption on logic-cells
and memory-cells. The modifications are reductions / expansions of a data-bus in the
MPU; from 8bits to 4bits, 16bits and 32bits. Furthermore a MPU without using the
menory-cells is designed. A number of registers in the MPU is reduced 1/16, because a
consumption of logic-cells for 256 registers is too large to build. Table 2 shows
consumptions of logic-cells and memory-cells for these MPUs. The experiments show that
consumption of logic-elements and memory-bits increases linearly. However increasing
consunption for memory-bits is quickly. Therefore the register-file of the MPU enlarges
for expanding the data bus. On a same number of the registers, the consumption of
memory-bits increases as a time as an expansion time by the data bus width. The
consumption of logic-elements is increase slower than the consumption of memory-bits.
To expand the data bus width does not complicate the control-logics. It needs data-
selectors and latch-logic. The control-logic is connected to data-selectors and
latch-logics.

Furthermore, the experiments show that the memory registers built by logic-cells are
not efficient to use the FPGA resource. By applying the logic-cells to register files,
the consumptions of memory-cells are reduced. However, the register files built by
logic-cells consume 4 times as much as control logics. By fitting the memory-cells for
building register files, a memory-cell-block can have only one register file, because
the memory-cell-block has only one port connecting to other logic-cells. In the
experiments, the MPU with 4bit data bus width consumes same number of memory-cell-blocks

14 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

for a MPU with 8bit data bus width.

Table 2: Increase in consumption cells on FPGA (EP1K10).

Data Bus Width Mem&ri);sB)lts Logic Elements
8(Logic Register) 4,096 330
4 5,120 71
8 6,144 83
16 8,192 92
32 12,288 108
EP1K10(Max) 12,288 576

3.4 Differences of Implementation for Multi MPU on an FPGA

To evaluate differences for consumptions by the number of the MPUs, some MPUs are built
in an FPGA. EP1K30 is selected for next experiments, because EP1K10 does not have much
memory-cells and logic-cells. Table 3 shows the result about the experiments. The results
show that the MPUs consume the same volume of the logic-cells and the memory-cells for
each MPU. However, our MPU is very compact and suitable to the FPGA, and can be built
3 MPUs in the FPGA at least. In this design, there is a limit of the number of MPUs by
consuming memory-cells.

These experiments show how to build the re-configurable MPU in the FPGA, and problems
in using the memory-cells. To realize an expansion of bus width, a number of
register-cells should be reduced. Therefore, to implement some MPUs in an FPGA, to share
the memory-cells between each MPU is important.

Table 3: Increase of consumption cells on FPGA (EP1K30).

Processors Mem(obrisjcsB;ts Logic Elements
1(Logic Register) 4,096 330
1 6,144 83
2 12,288 165
3 18,432 319
EP1K30(Max) 24,576 1,728

4 _Conclusions

We have shown and described how to compose a MPU with module structure. In chapter3.1,
we have shown the way to build a system applied our propose design method. In chapter3.2,
it has been shown that the change and addition of each module is easily executed.

A Design Methodology for Re-Configurable MPU for an Embedded 15
System and Software on an FPGA

Furthermore, we have shown the way to add an ALU and the efficiency of our propose design
method. In chapter3.3, we have shown the differences of descriptions and the consumptions
of the FPGA resources by changing the bus width on each MPU. Furthermore, in chapter3.4,
we have shown how to build some processors and the problems in an FPGA.

We have confirmed that we can realize a user demand in consideration of the trade-off.
The trade-off is following that. To modify data-bus-width, we must pay attention to
consumptions of memory-cells by a register-file. To add the MPU, we must pay attention
to consumptions of memory-cells and logic-cells. Furthermore, for efficient design, we
must realize a function to share the register-files among MPUs.

We have expressed that our proposed MPU and its design technique are effective and useful
to find a trade-off expanding MPUs in an FPGA.
As the future work, we will study about the following extensions.

-+ To build a multi processing system in an FPGA.

- To share the memory-cells on multiprocessor systems in an FPGA.

- To share the function modules between processors in an FPGA.

- To build a support functions for an embedded system.

By realizing extensions, our proposed processor system will obtain excellent
architectures to build an embedded system. The excellent architectures will realize
following systems.

- Real-time system without Real-time Operation System
- Multi processor system with register sharing
-+ Multi processor system with program memory sharing

We consider that these systems are very efficiency to built compact and flexible

embedded systems.

16 Hideo ARAKI**, Toshiro KUTSUWA and Katsumi HARASHIMA

References

[1] M. Gschwind, V. Salapura, D. Maurer, "FPGA Prototyping of RISC Processor Core for
Embedded Applications” in [EEE Trans. VLSI-Systems, Vol.9, No.2, pp.241-pp.250,
2001.

[2] B. K. Tan, T. Ogawa, R. Yoshimura, K. Taniguchi, ”A Reconfigurable Digital Signal
Processor” in IEICE Trans. Electron, Vol.E81-C, No.9, pp.1424-pp.1430, 1998.

(3] S. Honda, H. Takada, "Evaluation of Applying SpecC to the Integrated Design Method
of a Device Driver and a Device” in IPSJ Trans. Vol.43, No.5, pp.1214-pp. 1224, 2002.

(4] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, Spec C: Specification
Language and Methodlogy, Kluer Academic Publishers, 2000.

	20200728110841
	20200728110926
	20200728110950
	20200728111001
	20200728111014
	20200728111025
	20200728111037
	20200728111047
	20200728111100
	20200728111110
	20200728111123
	20200728111134
	20200728111146
	20200728111157
	20200728111214
	20200728111225

