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Abstract

J.W.Milnor introduced a local move called the link-homotopy and it 1is an
important tool for the classification of links.

Recently several local moves of links whose concepts are stronger than that of
link-homotopy are defined. And the properties of these moves are studied and
applied to the classification of links.

In this paper, we discuss a local move called the #-move and prove some propertieso
f it and apply them to the classification of links obtained by fusions.
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1 Introduction.

Throughout this paper, link is tame, oriented and ordered one in an orienteq
3-space R°.

For a link ¢, the deformation illustrated in Fig. 1(a) ((b)) applied to a
component of ¢ is called a self § (resp. self pass)-move. (In [4],[7],[8], these
moves were called self f(I)-move, self §(II) -move respectively.)

Two links ¢ and ¢ are said to be self §f (or self pass)-equivalent or ¢ is said
to be self | (resp. self pass)-equivalent to ¢ if ¢ can be deformed into ¢ by a
finite sequence of self § (resp. self pass)-moves.

Fig. 1

If £ and ¢ are self pass-equivalent, they are self f-equivalent [3]. But the
converse is not true. The following is known [4], where (k) means the Arf
invariant of a knot k [5].

Proposition. For two n-component links ¢ = k, U ... Uk, and ¢ =
ky U ..Uk, if £ and € are self {-equivalent and @(k;) = (ki) for each
t=1,...,n, then £ and ¢' are self pass-equivalent.

Although we consider some properties of self f-equivalence of links only ,
the obtained results in this paper may apply to self pass-equivalence of links
by adding the condition of the Arf invariant of knots.

Let L = K, U ..U K, be an n-component link. Suppose that B =
B, U ...U B, is a union of mutually disjoint disks B; for p < n such that
B; N L =08B;N L which consists of two arcs of L with orientation coherently
to that of L for each i = 1,...,p and L(= L + 8B) is an (n — p)-component
link. Then we say that L is obtained by a p-fusion of L and that B are disks
of a p-fusion of L.
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In Section 2, we study the self §-equivalence of links obtained by p-fusions
of self f-equivalent links and prove Theorems 2.2 and 2.4.

Next we consider a special p-fusion, called a product p-fusion. If ' =
K, U...UKj is an n- component link split from the above L in R* namely
there is a 3-ball £2 in R® such that L C E3and L'NE3 =0 , then we denote
LUL by Lo L'. For a 2n-component link Lo L', let B = B; U ...U B,, be
disks of an n-fusion of Lo L' such that B; N( Lo L)=(anarc of K;)U(anarc of
K!) for each B;, i =1,...,n. Then L( = Lo L'+ 0B) is called a link obtained
by a product n. fusion of Lo L'.

In Section 3, we study the self f-equivalence of links obtained by product
n-fusions of split links and prove Theorems 3.1 and 3.3.

2  Fusions and self g-move of links.

For two n-component links ¢ =k U ... Uk,,¢ = kj U.. .Uk, in R*[a], R*[b]
respectively, if there is a union of mutually disjoint annuli A = A;U...UA, In
R3[a, b] satisfying the following, we say that A is the union of §-annuli between
fand ¢: ANR*a) = ¢, ANR[b] = —¢" and A; N R*[a] = ki, A;N R3[b] = —k!
for each annulus A; and A is locally flat and non-singular except finite points
in the interior of A which are the singularities of A, denoted by S(.A),such
that (ON( P: R3[a,b]),0ON( P: A)) is the link illustrated in Fig. 2 for each
point P of S(.A). In this case, £ and ¢ are said to be f- cobordant or ¢ is said
to be f§ -cobordant to ¢'.

or

Fig. 2
We easily see that, if £ and ¢ are self -equivalent, they arelevel-preserving

f -annuli A, namely A has neither minimal nor maximal points [2], between
¢ and ¢'. Moreover we obtain the following by the similar way to the proof
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of Lemma 1. 17 in [6).

Lemma 2.1. For two links ¢ and ¢ in R°,¢ and ¥’ are self §-equivalen;
if and only if they are f-cobordant.

Theorem 2.2. Let ¢ and ¢ be n-component links which are self f-
equivalent. For any integer p(1 < p < n), let L be a link obtained by any
p fusion of ¢. Then there is a link L' which is obtained by a p fusion of ¢
such that L and L' are self §-equivalent.

Proof. As ¢(C R®[0]) and #(C R®[2]) are self f-equivalent, there is a
union of mutually disjoint level-preserving f-annuli A(= A; U ... U A,) in
R?[0,2] between £ and /. Let P, ..., P, be the points of S(A) and a, ..., q,
mutually disjoint level-preserving arcs in R*[—1,2] such that &;N.A = P, and
da; = P, U Q; for a point Q; in R°[—1]. By deforming A along «; from P:
to ; with A fixed, we obtain annuli A’ in R*[—1,2] with 04" = 0A. Let
F = AN R?0,2]. Then F is a locally flat non-singular orientable surface of
genus 0 with FNR*[0] = foL and FNR?2] = —¢', where L consists of q links
illustrated in Fig. 2. By an isotopy of R*[0,2] with F N R*[0] fixed, we obtain
a surface Fy from F such that 9F, N R3[0] = o L and 8Fo N R*2] ~ —¢
and there are disks C in R*[1] of a 4¢-fusion of (£ o £) x {1} with L =
(o L) x{1})+0C = ¢ satisfying that Fo—C x[0,2] = (FoN R*[1]-C) x[0,2],
where X x {¢} means the projection of X into R[]

Since ¢ is split from L, there is a 3-ball E° in R3[0] such that E°N(¢oL) =
L. As L is obtained by a p-fusion of ¢, there are mutually disjoint disks B
in R*[0] such that L = ¢+ OB. Furthermore we may choose B such that
BN (EPUC x {0}) =0 and so Fo N (B x [0,2]) = Fo N (0B x [0,2]) by the
construction of Fo. Then F = cl((Fo— (0BN¥) x[0,2])U(B—¥)x[0,2])isa
non -singular orientable surface of genus 0 in R*[0,2] with 9 FN R*[0] = LoL
by the choice of B. Since L consists of ¢ links illustrated in Fig. 2 which
is split from L, we may construct a union Ay of mutually disjoint f-annuli
in R?[0,2] by using F between L and A, N R*[2](= OF N R3[2]) which is
ambient isotopic to a link obtained by a p-fusion of ¢. Hence we obtain
Theorem 2.2 by Lemma. 2.1.

For a link ¢ = k; U ... Uk,, ¢ is said to be proper if the linking number
Link(k;, £ — ki)(= >_;.; Link(k;, k;)) is even for each i = 1,...,n. The Arf

invariant ¢(¢) is defined if ¢ is proper [5]. Hence the reduced Arf invariant,
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denoted by @(£)(= ¢(¢) — > ', w(k:) mod 2), is also defined if £ is proper.

For the self §-equivalence of 2-component links, the following is known in
[8]. (Recently it is proved that the self f-equivalence of homotopic links can
be classified by these reduced Arf invariants of proper sublinks [9].)

Lemma 2.3. Let £ = k Uk, V' = kYUK, be 2-component links respectively
with Link ki, ky) = Link(k}, k) (=1). Then

(1) If risodd, ¢ and ¢' are self §-equiwalent.

(2) If ris even, ¢ and ¢’ are self §-equivalentifand only if @(¢) = @(L').

For p =n — 2 in Theorem 2. 2 we obtain the following.

Theorem 2.4. Suppose that £ = ¢, U4, and ¢' = ¥{ U ¥, are n-component
links whidh are selff -equivalent and that L = K, UK, and L' = K] U K}, are
links obtained by any (n — 2) fustons of ¢ and ¢ respectively, where K,; and
K are knots obtained by (n; — 1)-fusions of ¢; and ¢; respectively for i = 1,2
andny +ny = n. Letr = Link(4,,4,)(= ZA:,cfl,A:Jcé'z Link(k;,k;)). Then

(1) If risodd, L and L' are self §-equivalent.

(2) If riseven and ¢, £, and ¥y are proper, L and L' are self f§-equivalent.

Proof. Since ¢ and ¢ are self f§-equivalent, each ¢; and ¢ is self {-
equivalent for 4 = 1,2 and so Link(¢|,#,) = r. Moreover, since both K,
and K! are obtained by (n; — 1)-fusions of ¢; and ¢, respectively, we obtain
that Link(K;, K,) = Link(K1{, K}) = r. Hence if r is odd, L and L' are self
f-equivalent by Lemma 2.:31).

Next we consider the case when r is even. Then both L and L’ are proper.
Hence it is sufficient to prove that @(L) = @(L') in this case by Lemma 2. J2).

Since ¢ and ¢’ are self f-equivalent and ¢,,¢, are proper, ¢},¢, are also
proper and self f-equivalent to ¢;, ¥, respectively. Therefore we have p(¢) =
o(L),p(¢) = p(L'), () = p(Ki), p(€) = @(K]), p(€) = ¢(¢') and @(£;) =
@(¢) for i = 1,2. Hence,

o(L) = (L) — p(K1) — p(K2) = ¢(f) — p(£1) — ¢(2)
= () — @) —p(lr) =) —o(fy) — ¢(43) = ¢(L') (mod 2).

Therefore L and L' are self f-equivalent.

For an n-component link ¢ =k, U ... Uk,, ¢ is said to be purely proper if
Link(k;, k;) is even for each 7,5 =1,..,n,i # j. If £ is purely proper, ¢ and
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any sublink of # are proper. By Theorem 2.4 we obtain

Corollary 2.5. Let ¢,¢' and L,L’ be those of Theorem 2.4. If £ is purely
proper, L and L' are self §-equivalent.

Remark 2.6. In Theorem 2.4(2), if one of ¢,#; or £, is not proper, there
are links L and L’ which are not self f-equivalent.

Example 1. ¢ is not proper.

Two links L and L' obtained by 2-fusions of a link ¢ in Fig. 3 are not self
f-equivalent by Lemma 2.3, because ¢(L) = 0 and ¢(L’) = 1.

D

()
<><J}>~O§9>—><><Of_@>

Ne,

Fig. 3
Example 2. ¢, 15 not proper.

Two links L and L' obtained by 2-fusions of ¢ in Fig. 4 are not self
f-equivalent, because ¢(L) =0 and ¢(L’) = 1.

G A
i JA <><Jfb

Fig. 4



FUSION AND SELF SHARP EQUIVALENCE OF LINKS 7

3 Product n-fusions and self §-move of links.

In this section, we consider the self f-equivalence of links obtained by product

fusions.

Theorem 3.1. Let ¢ and ¢ be n-component links. Then ¢ and ¢' are self
f-equivalent if and only if there is a product n-fusion of ¢ o ( —¥¢)such that
the link Ly obtained by the fusion is self f§-equivalent to a trival link.

Proof. Suppose that ¢( CR?[0]) and ¢ (C R3[2]) are self f-equivalent.
Then there are a surface Fo( CR®[0,2]) and disks C( CR®[1]) having the
same properties of the proof of Theorem 2.2.

[t is known that there is a product n-fusion of o ( —#¢puch that the link
L obtained by the fusion is a ribbon link [1]. Furthermore we may choose
the disks £ of the above product m-fusion of ¢ o ( —¢)in R*[0] such that
EN( BUC x {0}) = 0, where E? is that of the proof of Theorem 2.2 and
Fon ( € X0,2]) = ( N IE) x [0,2] by the construction of Fy. Therefore
we may easily construct frannuli Ay in R*[0,2] between L and a link L'( =
Vo( —fH O( € x{2})). Since L is a ribbon link, L is self f-equivalent to a
trivial link O [7]. Hence L' is fj-cobordant to O and so L' is self f-equivalent
to O by Lemma 2.1. Therefore we obtain the necessity.

Next let us prove the sufficiency. Suppose that L', are those of the
above. Then L' + 9( € x{2}) = # o( —/)and so we easily construct f-annuli
between ¢ and ¢. Hence we obtain that ¢ and ¢ are self f-equivalent by

Lemma 2.1.

In general, the links obtained by product n-fusions of £0# are not unique
up to self f-equivalence. For example, let L, L’ be two links obtained by
product 2-fusions of 2 Hopf links, Fig. 5. Then L and L’ are not self §-
equivalent by Lemma 2.3, because ¢( L)=0 and ¢( L'}= 1.

() (2%

Ut

Fig.
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But the following is true for 2-component links obtained by product 9.
fusions.

Theorem 3.2. Let ¢ = ky Uk, and ¢’ = k] UK, be 2-component links it b
Link(ky, ky) = s and Link(k},ky) = s" and L, L' links obtained by product
2-fusions of Yo ¢'. If s or s' is even, L and L' are self [j-equivalent.

Proof. As both L(= K,UK,) and L'(= K{UK}) are obtained by product
2-fusions of £ o ¢, ¢ is split from ¢ and so Liink(K, K2) = Link(K{, K}) =
s+ 5.

If s is even and s’ is odd (or sis odd and s’ is even), s+ s’ is odd and so
L and L' are self f-equiva lentby Lemma 2.3(1).

Next suppose that both s and s’ are even. Then s+ s’ is even and so L, [/
and ¢ o ¢’ are proper and ¢(L) = (£ o l') = p(L') and ¢(K;) = @(k; o k!) =
¢(K|) by the construction of L, L', K; and K] [5]. Therefore ¢(L) = ¢(L/)

and hence L and L’ are self f-equivalent by Lemma 2.3.
By Theorems 3.1 and 3.2, we obtain the following.
Corollary 3.3. Let /(= kUk,) and €' be 2-component links which are self

i-equivalent . If Link(k,ky) is even, any link obt amed by product 2 fusion of
Vo (=1 is self fi-equivalent t o a tmnvial link.

- 18—
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