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Abstract

It is known that two cobordant links can be transformed from one into the other by a finite
sequence of link-homotopy (resp. self #-moves, self pass-moves). However it does not hold in
the case of self ∆-moves. Let L be a link and L′ the link obtained by certain product fusion
of L and a separate ribbon link. It is easy to see that L and L′ are cobordant. In this paper,
we show that L and L′ can be transformed from one into the other by a finite sequence of self
∆-moves.
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1. Introduction

Throughout this paper, knots and links are ordered and oriented in a 3-space R3. A local
move as illustrated in Figure 1 is called the ∆-move ([3], [4]). If the three strands in the figure
belong to the same component of a link, we call the ∆-move the self ∆-move. We say that two
links L and L′ are self ∆-equivalent or that L is self ∆-equivalent to L′ if L can be transformed
into L′ by a finite sequence of self ∆-moves and ambient isotopies.

Figure 1

If a link L ∪ L′ is split in R3, namely, there is a sphere S in R3 such that each connected
component of R3 − S contains either L or L′, then we denote the link by L ◦ L′ and we call S
a splitting sphere for L ◦ L′. Let L = K1 ∪ · · · ∪ Kn and L′ = K ′

1 ∪ · · · ∪ K ′
n be n-component

links and let B = B1 ∪ · · · ∪ Bn be a disjoint union of bands for a fusion of L and L′, where Bi

is a band for a fusion of Ki and K ′
i (i = 1, · · · , n). Then the link (L ◦ L′) ⊕ ∂B is called a link

obtained by a fusion of L and L′, where ⊕ means the homological addition. Moreover if Bi ∩ S

consists of an arc for each i, then (L ◦ L′) ⊕ ∂B is called a link obtained by a product fusion of
L and L′, and denoted by L#

B
L′ or simply by L#L′.

It is known that there is a pair of links which are cobordant but not self ∆-equivalent ([6], [7])
(but if one of the pair is a trivial link, they are self ∆-equivalent [10]). A link L = K1 ∪ · · · ∪Kn

is called a separate ribbon link if there is a disjoint union D = D1 ∪ · · · ∪Dn of ribbon disks with
∂D = L and ∂Di = Ki (i = 1, · · · , n). Then the following is our main theorem.

Theorem 1.1. Let ℓ be an n-component link and L an n-component separate ribbon link which
bounds a disjoint union D = D1∪· · ·∪Dn of ribbon disks. Suppose that there is a sphere S such
that each connected component of R3 − S contains ℓ or D. Let B = B1 ∪ · · · ∪ Bn be a disjoint
union of bands for a product fusion of ℓ and L. If Bi ∩ Dj = ∅ for each i and j (i ̸= j), then ℓ

and ℓ#L are self ∆-equivalent.

For an n-component link ℓ and an n-component separate ribbon link L, a link obtained by a
fusion of ℓ and L is cobordant to ℓ. However there is a link obtained by a fusion of ℓ and
L which is not self ∆-equivalent to ℓ. For example, let H be a Hopf link, O = O1 ∪ O2 the
2-component trivial link, and B1 = B11 ∪ B12 the bands for a fusion of H and O as illustrated
in the leftside of Figure 2. Then (H ◦ O)⊕ ∂B1 is cobordant to H, but not self ∆-equivalent to
H ([6]). Thus Theorem 1.1 does not hold for a fusion (Note that this fusion is not a product
fusion). In addition, the link H#

B2

O as illustrated in the rightside of Figure 2 is obtained by

a product fusion and ambient isotopic to (H ◦ O) ⊕ ∂B1. However since O2 does not bound a
non-singular disk without intersecting with B21, condition “Bi ∩Dj = ∅ if i ̸= j” is necessary in
Theorem 1.1.
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Figure 2

Next let H#M be the link obtained by a product fusion of the Hopf link H and a Milnor link
M as illustrated in Figure 3. Although M is a ribbon link, it is known that M is not a separate
ribbon link ([2]). Let D = D1 ∪ D2 be a union of ribbon disks as illustrated in Figure 3. Then
we have that D ∩ B = ∂D ∩ ∂B. Since a3(H) = 0, a3(H#M) = 2 for the third coefficient of
the Conway polynomial, and any component of H (resp. H#M) is trivial, H#M is not self
∆-equivalent to H from Theorem 3 in [5]. Hence condition “separateness” of L is necessary in
Theorem 1.1.

S
D1

D2

H M

Figure 3

2. Proof of Theorem 1.1

To prove Theorem 1.1, we transform B ∪D so that D is a disjoint union of non-singular disks
and S(B ∩ D) = ∅, where S(B ∩ D) is the set of singularities of B ∩ D. These transformations
are realized either by isotopy or by self ∆-moves, which means that the links (ℓ ◦ ∂D) ⊕ ∂B of
the before and the after of a transformation are isotopic or self ∆-equivalent. Before proving
Theorem 1.1, we show the following special case that D is a disjoint union of non-singular disks.

Proposition 2.1. Let ℓ be an n-component link and O the n-component trivial link which bounds
a disjoint union D = D1 ∪ · · · ∪Dn of non-singular disks. Suppose that there is a sphere S such
that each connected component of R3 − S contains ℓ or D. Let B = B1 ∪ · · · ∪ Bn be a disjoint
union of bands for a product fusion of ℓ and O. If Bi ∩ Dj = ∅ for each i and j (i ̸= j), then ℓ

and ℓ#O are self ∆-equivalent.
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Each band Bi in int S is divided into open sub-bands by Di (i = 1, · · · , n). Let U be the set of
all such open sub-bands, that is, U = ∪((Bi∩ int S)−Di). Let b be an element of U ∩Bi. On the
process of the proof, b intersects with Dj in ribbon arcs (j < i). Let α and α′ be singularities of
S(b ∩ Dj) and b′ the open sub-band of b the ends of whose closure are α and α′ (we say simply
that α and α′ are the ends of b). We call α and α′ an innermost intersection pair if S(b′∩D) = ∅,
and b′ ∩ (Dj × [0, 1]) = ∅ or b′ ∩ (Dj × [0,−1]) = ∅. We say that b is well-situated with respect
to Dl = D1 ∪ · · · ∪ Dl if S(b ∩ (D − Dl)) = ∅ and we can reduce S(b ∩ Dl) to the empty set by
removing innermost intersection pairs one by one.

Lemma 2.2. (Lemma 2.2, [9]) The transformations as illustrated in Figure 4 are realized by
∆-moves.

(a) (b)

Figure 4

Proof of Proposition 2.1. Let ℓ = k1∪· · ·∪kn, ℓ#O = K1∪· · ·∪Kn, where Ki = (ki◦∂Di)⊕∂Bi.
We show that ℓ#O can be transformed into ℓ by applying self ∆-moves to K1, · · · ,Kn in this
order. We transform B ∪D so that Bi ∩Di is an arc on S and that each open sub-band of U is
well-situated with respect to D1 ∪ · · · ∪Di (Step P1 for i = 1 and Step P2 for i = 2, · · · , n− 1),
and then transform B ∪D so that Bn ∩Dn is an arc on S (Step P3). If S(Bi ∩Di) = ∅, then we
can shrink Bi so that Bi ∩ Di is an arc on S. Thus we assume that S(Bi ∩ Di) ̸= ∅ for each i.

Step P1: Take a look at S(B1 ∩ D1) = {α1, · · · , αm} and their pre-images {α̇1, · · · , α̇m} ∈ B∗
1

and {α̈1, · · · , α̈m} ∈ D∗
1, where α̇1, · · · , α̇m are positioned on B∗

1 so that α̇k is closer to D∗
1 than

α̇k+1 (k = 1, · · · , m − 1) (see Figure 5 for a case that m = 3). We eliminate the singularities
α1, · · · , αm in this order by self ∆-moves on K1.

D1

B1

α1

α2

α3

*

*

α2α1 α3

α3

α2

α1

Figure 5
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Step P1a: Let b1 be the open sub-band of U whose ends are α1 and ∂B1 ∩ ∂D1. Since the
∆-move is an unknotting operation [4], b1 can be transformed into the unknot by using the
transformations as illustrated in Figure 4. Here an open sub-band b whose ends are on a disk
D is unknotted if there is a disk δ such that the intersections δ ∩ b = ∂δ ∩ b and δ ∩D = ∂δ ∩D

are complementary two arcs of ∂δ, where the other open sub-bands may intersect with δ (see
Figure 6). If an open sub-band which belongs to B1 intersects with the disk δ for b1, then we
can remove the open sub-band out of δ by the transformations as illustrated in Figure 4. If we
still have open sub-bands which intersect with the disk δ for b1, then isotop these sub-bands out
of δ and eliminate α1 as illustrated in Figure 6. Then the band whose original ends are α1 and
α2 has now ∂B1 ∩ ∂D1 and α2 as its ends, and thus U has one fewer components than that of
the before the process. Note that the open sub-bands of U are all well-situated with respect to
D1, and that the open sub-bands of U ∩ B1 do not intersect with D1.

isotopyisotopy
self

∆-moves

δ

Figure 6

Step P1b: Assuming that we have eliminated singularities α1, · · · , ak−1 (k = 2, · · · ,m), that
the open sub-bands of U are all well-situated with respect to D1, and that the open sub-bands
of U ∩ B1 do not intersect with D1, take a look at αk and let bk be the open sub-band of U

whose ends are αk and ∂B1∩∂D1. Similarly to Step P1a, transform bk into the unknot by using
the transformations as illustrated in Figure 4. However here we need to isotop the bands which
do not belong to B1 but intersect with D1 before and after the transformations as illustrated in
Figure 7 so that we can apply self ∆-moves. Then eliminating αk similarly to Step P1a, we have
that the band whose original ends are αk and αk+1 has now ∂B1 ∩ ∂D1 and αk+1 as its ends
(αm+1 = B1 ∩ S), and thus U has one fewer components than that of the before the process.
Note that the open sub-bands of U are all well-situated with respect to D1, and that the open
sub-bands of U ∩ B1 do not intersect with D1.

isotopy isotopy
self

∆-moves

Figure 7
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Applying the above processes, we eliminate the singularities α1, · · · , αm and thus we can shrink
B1 so that B1 ∩ D1 = ∂B1 ∩ ∂D1 is an arc on S.

Step P2: Assuming that Bj ∩Dj = ∂Bj ∩ ∂Dj is an arc on S (j = 1, · · · , k − 1) and that each
open sub-band of U is well-situated with respect to Dk−1 = D1 ∪ · · · ∪ Dk−1, transform B ∪ D
so that Bk ∩Dk = ∂Bk ∩ ∂Dk is an arc on S and that each open sub-band of U is well-situated
with respect to D1 ∪ · · · ∪ Dk (k = 2, · · · , n − 1). This can be done similarly to Step P1 except
we remove all the sigularities of S(b ∩ Dk−1) before transforming b into the unknot when we
eliminate a singularity α, where b is the open sub-band of U whose ends are α and ∂Bk ∩ ∂Dk.
Note that each sub-band bounded by an innermost intersection pair of S(b∩Dk−1) is unknotted
from the construction, and thus there is a disk δ such that the intersections δ ∩ b = ∂δ ∩ b and
δ∩Dj = ∂δ∩Dj are complementary two arcs of ∂δ. Open sub-bands belonging to Bk ∪ · · · ∪Bn

may intersect with δ. Remove the intersections of Bk ∩ δ by using the transformations as
illustrated in Figure 4 or in Figure 7, and elminate the innermost intersection pair by isotoping
b along δ out of Dk (this isotopy may creat new innermost intersection pairs for open sub-bands
belonging to Bk+1 ∪ · · · ∪ Bn).

Step P3: We have that Bi∩Di = ∂Bi∩∂Di is an arc on S (i = 1, · · · , n−1) and U∩B = U∩Bn,
and that each open sub-band of U is well-situated with respect to D1 ∪ · · · ∪ Dn−1. Transform
B ∪ D so that Bn ∩ Dn = ∂Bn ∩ ∂Dn is an arc on S and that U is the empty set similarly to
Steps P1 and P2. Then (ℓ ◦ ∂D)⊕ ∂B is ambient isotopic to ℓ. Hence the proof is complete.

�

The idea of the proof of Theorem 1.1 is the same as that of the proof of Proposition 2.1, and
thus we prove Theorem 1.1 by referring the proof of Proposition 2.1.

Proof of Theorem 1.1. Since each Dj is a ribbon disk, we can deform Bj ∪ Dj into a union
(B0

j ∪ D0
j ) ∪ (B1

j ∪ D1
j ) ∪ · · · ∪ (Bmj

j ∪ D
mj

j ) of bands Bj = B0
j ∪ B1

j ∪ · · · ∪ B
mj

j and disks
Dj = D0

j ∪ D1
j ∪ · · · ∪ D

mj

j satisfying the following (j = 1, · · · , n) ([1]) (see Figure 8 for an
example of the pre-image B∗

1 ∪ D∗
1):

(i) B0
j = Bj and Bi

j connects ∂D0
j and ∂Di

j (i = 1, · · · ,mj); and

(ii) Each Dk∗
j contains only i-lines and each Bk∗

j contains only b-lines (k = 0, · · · ,mj).

D1
*1

B1
*1

D1
*2

B1
*2

D1
*3

B1
*3

D1
*0

B1
*0

Figure 8
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Moreover note that each Bj ∪ Dj has only self-intersections, that is, Bk
j intersects only with

Dj , since L is a separate ribbon link. Let ℓ = k1 ∪ · · · ∪ kn, ℓ#L = K1 ∪ · · · ∪ Kn, where
Kj = (kj ◦ ∂Dj)⊕ ∂Bj . We show that ℓ#L can be transformed into ℓ by applying self ∆-moves
to K1, · · · , Kn in this order.

First, for each band Bk
j (k ̸= 0), remove intersections of Bk

j and Dl
j with l ̸= k by using the

transformations as illustrated in Figure 4 (a). Then we have that Bk
j (resp. D0

j ) intersects only
with Dk

j (resp. B0
j ) and that Dk

j (resp. B0
j ) intersects with B0

j and Bk
j (resp. Dj). Each band

Bk
j and B0

j in int S is divided into open sub-bands by Dk
j and Dj , respectively. Let U be the set

of all such open sub-bands, that is, U = ∪j(((B0
j ∩ int S)−Dj)∪∪k ̸=0((Bk

j ∩ int S)−Dk
j )). We

define well-situatedness of an element of U with respect to a subset of D1 ∪ · · · ∪ Dn as before.

Step T1: Take a look at the singularities α1, · · · , αm of B1
1 , where pre-images α̇1, · · · , α̇m on

B1∗
1 are positioned so that α̇t is closer to D1∗

1 than α̇t+1 (t = 1, · · · ,m − 1). We eliminate the
singularities α1, · · · , αm in this order by self ∆-moves on K1.

Step T1a: Let b1 be the open sub-band of U whose ends are α1 and ∂B1
1 ∩ ∂D1

1. Transform
b1 into the unknot by using the transformations as illustrated in Figure 4 as in Step P1a of the
proof of Proposition 2.1. If an open sub-band which belongs to B1 intersects with the disk δ for
b1, then remove the open sub-band out of δ by the transformations as illustrated in Figure 4. If
we still have open sub-bands which intersect with the disk δ for b1, then isotop these sub-bands
out of δ and eliminate α1 as illustrated in Figure 6. Then the band whose original ends are α1

and α2 has now ∂B1
1 ∩ ∂D1

1 and α2 as its ends, and thus U has one fewer components than that
of the before the process. Note that the open sub-bands of U are all well-situated with respect
to D1

1, and that the open sub-bands of U ∩ B1 do not intersect with D1
1.

Step T1b: Assuming that we have eliminated singularities α1, · · · , at−1 (t = 2, · · · ,m), that
the open sub-bands of U are all well-situated with respect to D1

1, and that the open sub-bands
of U ∩B1 do not intersect with D1

1, take a look at αt and let bt be the open sub-band of U whose
ends are αt and ∂B1

1 ∩ ∂D1
1. Similarly to Step P1b of the proof of Proposition 2.1, transform

bt into the unknot by using the transformations as illustrated in Figure 4 or in Figure 7. Then
eliminating αt similarly to Step T1a, we have that the band whose original ends are αt and αt+1

has now ∂B1
1 ∩∂D1

1 and αt+1 as its ends (αm+1 = B1
1 ∩S), and thus U has one fewer components

than that of the before the process. Note that the open sub-bands of U are all well-situated
with respect to D1

1, and that the open sub-bands of U ∩ B1 do not intersect with D1
1.

Applying the above processes, there are no singularities on B1
1 . Thus we merge D1

1 and D0
1 into

D0
1 by shrinking B1

1 .

Step T1c: Applying Step T1a and Step T1b to B2
1 , · · · , Bm1

1 , we have that B0
1 = B1 and

D0
1 = D1, that B1 intersects only with D1, and that the open sub-bands of U are all well-
situated with respect to D1. Then we can elminate all the singularities of B1 ∩ D1 similarly to
Step T1b. Thus we can shrink B1 so that B1 ∩ D1 = ∂B1 ∩ ∂D1 is an arc on S.

Step T2: Similarly to Step P2 and Step P3, we eliminate the singularities on Bk
j and merge

Dk
j and D0

j into D0
j by shrinking Bk

j (j = 2, · · · , n, k = 1, · · · ,mj), and then eliminate the
singularities on B0

j and shrink B0
j = Bj so that Bj ∩ Dj = ∂Bj ∩ ∂Dj is an arc on S. Then

(ℓ ◦ ∂D)⊕ ∂B is ambient isotopic to ℓ. Hence the proof is complete.
�
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