Self Delta-Equivalence of Links Obtained by Product Fusions by
Tetsuo SHIBUYA, Tatsuya TSUKAMOTO
Department of General Education, Faculty of Engineering (Manuscript received September 30, 2009)

Self Delta-Equivalence of Links Obtained by Product Fusions by
Tetsuo SHIBUYA, Tatsuya TSUKAMOTO
Department of General Education, Faculty of Engineering
(Manuscript received September 30, 2009)

Abstract

It is known that two cobordant links can be transformed from one into the other by a finite sequence of link-homotopy (resp. self \#-moves, self pass-moves). However it does not hold in the case of self Δ-moves. Let L be a link and L^{\prime} the link obtained by certain product fusion of L and a separate ribbon link. It is easy to see that L and L^{\prime} are cobordant. In this paper, we show that L and L^{\prime} can be transformed from one into the other by a finite sequence of self Δ-moves.

Keywords; knots, links, self Δ-moves, fusions

1. Introduction

Throughout this paper, knots and links are ordered and oriented in a 3 -space \mathbb{R}^{3}. A local move as illustrated in Figure 1 is called the Δ-move ([3], [4]). If the three strands in the figure belong to the same component of a link, we call the Δ-move the self Δ-move. We say that two links L and L^{\prime} are self Δ-equivalent or that L is self Δ-equivalent to L^{\prime} if L can be transformed into L^{\prime} by a finite sequence of self Δ-moves and ambient isotopies.

Figure 1
If a link $L \cup L^{\prime}$ is split in \mathbb{R}^{3}, namely, there is a sphere S in \mathbb{R}^{3} such that each connected component of $\mathbb{R}^{3}-S$ contains either L or L^{\prime}, then we denote the link by $L \circ L^{\prime}$ and we call S a splitting sphere for $L \circ L^{\prime}$. Let $L=K_{1} \cup \cdots \cup K_{n}$ and $L^{\prime}=K_{1}^{\prime} \cup \cdots \cup K_{n}^{\prime}$ be n-component links and let $\mathcal{B}=B_{1} \cup \cdots \cup B_{n}$ be a disjoint union of bands for a fusion of L and L^{\prime}, where B_{i} is a band for a fusion of K_{i} and $K_{i}^{\prime}(i=1, \cdots, n)$. Then the link $\left(L \circ L^{\prime}\right) \oplus \partial \mathcal{B}$ is called a link obtained by a fusion of L and L^{\prime}, where \oplus means the homological addition. Moreover if $B_{i} \cap S$ consists of an arc for each i, then $\left(L \circ L^{\prime}\right) \oplus \partial \mathcal{B}$ is called a link obtained by a product fusion of L and L^{\prime}, and denoted by $L \underset{\mathcal{B}}{\#} L^{\prime}$ or simply by $L \# L^{\prime}$.
It is known that there is a pair of links which are cobordant but not self Δ-equivalent ([6], [7]) (but if one of the pair is a trivial link, they are self Δ-equivalent [10]). A link $L=K_{1} \cup \cdots \cup K_{n}$ is called a separate ribbon link if there is a disjoint union $\mathcal{D}=D_{1} \cup \cdots \cup D_{n}$ of ribbon disks with $\partial \mathcal{D}=L$ and $\partial D_{i}=K_{i}(i=1, \cdots, n)$. Then the following is our main theorem.

Theorem 1.1. Let ℓ be an n-component link and L an n-component separate ribbon link which bounds a disjoint union $\mathcal{D}=D_{1} \cup \cdots \cup D_{n}$ of ribbon disks. Suppose that there is a sphere S such that each connected component of $\mathbb{R}^{3}-S$ contains ℓ or \mathcal{D}. Let $\mathcal{B}=B_{1} \cup \cdots \cup B_{n}$ be a disjoint union of bands for a product fusion of ℓ and L. If $B_{i} \cap D_{j}=\emptyset$ for each i and $j(i \neq j)$, then ℓ and $\ell \# L$ are self Δ-equivalent.

For an n-component link ℓ and an n-component separate ribbon link L, a link obtained by a fusion of ℓ and L is cobordant to ℓ. However there is a link obtained by a fusion of ℓ and L which is not self Δ-equivalent to ℓ. For example, let H be a Hopf link, $\mathcal{O}=O_{1} \cup O_{2}$ the 2-component trivial link, and $\mathcal{B}_{1}=B_{11} \cup B_{12}$ the bands for a fusion of H and \mathcal{O} as illustrated in the leftside of Figure 2. Then $(H \circ \mathcal{O}) \oplus \partial \mathcal{B}_{1}$ is cobordant to H, but not self Δ-equivalent to H ([6]). Thus Theorem 1.1 does not hold for a fusion (Note that this fusion is not a product fusion). In addition, the link $\underset{\mathcal{B}_{2}}{\# \#}$ 全 as illustrated in the rightside of Figure 2 is obtained by a product fusion and ambient isotopic to $(H \circ \mathcal{O}) \oplus \partial \mathcal{B}_{1}$. However since O_{2} does not bound a non-singular disk without intersecting with B_{21}, condition " $B_{i} \cap D_{j}=\emptyset$ if $i \neq j$ " is necessary in Theorem 1.1.

Figure 2
Next let $H \# M$ be the link obtained by a product fusion of the Hopf link H and a Milnor link M as illustrated in Figure 3. Although M is a ribbon link, it is known that M is not a separate ribbon link ([2]). Let $\mathcal{D}=D_{1} \cup D_{2}$ be a union of ribbon disks as illustrated in Figure 3. Then we have that $\mathcal{D} \cap \mathcal{B}=\partial \mathcal{D} \cap \partial \mathcal{B}$. Since $a_{3}(H)=0, a_{3}(H \# M)=2$ for the third coefficient of the Conway polynomial, and any component of H (resp. $H \# M$) is trivial, $H \# M$ is not self Δ-equivalent to H from Theorem 3 in [5]. Hence condition "separateness" of L is necessary in Theorem 1.1.

Figure 3

2. Proof of Theorem 1.1

To prove Theorem 1.1, we transform $\mathcal{B} \cup \mathcal{D}$ so that \mathcal{D} is a disjoint union of non-singular disks and $\mathcal{S}(\mathcal{B} \cap \mathcal{D})=\emptyset$, where $\mathcal{S}(\mathcal{B} \cap \mathcal{D})$ is the set of singularities of $\mathcal{B} \cap \mathcal{D}$. These transformations are realized either by isotopy or by self Δ-moves, which means that the links $(\ell \circ \partial \mathcal{D}) \oplus \partial \mathcal{B}$ of the before and the after of a transformation are isotopic or self Δ-equivalent. Before proving Theorem 1.1, we show the following special case that \mathcal{D} is a disjoint union of non-singular disks.

Proposition 2.1. Let ℓ be an n-component link and \mathcal{O} the n-component trivial link which bounds a disjoint union $\mathcal{D}=D_{1} \cup \cdots \cup D_{n}$ of non-singular disks. Suppose that there is a sphere S such that each connected component of $\mathbb{R}^{3}-S$ contains ℓ or \mathcal{D}. Let $\mathcal{B}=B_{1} \cup \cdots \cup B_{n}$ be a disjoint union of bands for a product fusion of ℓ and \mathcal{O}. If $B_{i} \cap D_{j}=\emptyset$ for each i and $j(i \neq j)$, then ℓ and $\ell \# \mathcal{O}$ are self Δ-equivalent.

Each band B_{i} in int S is divided into open sub-bands by $D_{i}(i=1, \cdots, n)$. Let U be the set of all such open sub-bands, that is, $U=\cup\left(\left(B_{i} \cap \operatorname{int} S\right)-D_{i}\right)$. Let b be an element of $U \cap B_{i}$. On the process of the proof, b intersects with D_{j} in ribbon arcs $(j<i)$. Let α and α^{\prime} be singularities of $\mathcal{S}\left(b \cap D_{j}\right)$ and b^{\prime} the open sub-band of b the ends of whose closure are α and α^{\prime} (we say simply that α and α^{\prime} are the ends of b). We call α and α^{\prime} an innermost intersection pair if $\mathcal{S}\left(b^{\prime} \cap \mathcal{D}\right)=\emptyset$, and $b^{\prime} \cap\left(D_{j} \times[0,1]\right)=\emptyset$ or $b^{\prime} \cap\left(D_{j} \times[0,-1]\right)=\emptyset$. We say that b is well-situated with respect to $\mathcal{D}_{l}=D_{1} \cup \cdots \cup D_{l}$ if $\mathcal{S}\left(b \cap\left(\mathcal{D}-\mathcal{D}_{l}\right)\right)=\emptyset$ and we can reduce $\mathcal{S}\left(b \cap \mathcal{D}_{l}\right)$ to the empty set by removing innermost intersection pairs one by one.

Lemma 2.2. (Lemma 2.2, [9]) The transformations as illustrated in Figure 4 are realized by Δ-moves.

Figure 4

Proof of Proposition 2.1. Let $\ell=k_{1} \cup \cdots \cup k_{n}, \ell \# \mathcal{O}=K_{1} \cup \cdots \cup K_{n}$, where $K_{i}=\left(k_{i} \circ \partial D_{i}\right) \oplus \partial B_{i}$. We show that $\ell \# \mathcal{O}$ can be transformed into ℓ by applying self Δ-moves to K_{1}, \cdots, K_{n} in this order. We transform $\mathcal{B} \cup \mathcal{D}$ so that $B_{i} \cap D_{i}$ is an arc on S and that each open sub-band of U is well-situated with respect to $D_{1} \cup \cdots \cup D_{i}$ (Step P1 for $i=1$ and Step P2 for $i=2, \cdots, n-1$), and then transform $\mathcal{B} \cup \mathcal{D}$ so that $B_{n} \cap D_{n}$ is an arc on S (Step P3). If $\mathcal{S}\left(B_{i} \cap D_{i}\right)=\emptyset$, then we can shrink B_{i} so that $B_{i} \cap D_{i}$ is an arc on S. Thus we assume that $\mathcal{S}\left(B_{i} \cap D_{i}\right) \neq \emptyset$ for each i.

Step P1: Take a look at $\mathcal{S}\left(B_{1} \cap D_{1}\right)=\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}$ and their pre-images $\left\{\dot{\alpha}_{1}, \cdots, \dot{\alpha}_{m}\right\} \in B_{1}^{*}$ and $\left\{\ddot{\alpha}_{1}, \cdots, \ddot{\alpha}_{m}\right\} \in D_{1}^{*}$, where $\dot{\alpha}_{1}, \cdots, \dot{\alpha}_{m}$ are positioned on B_{1}^{*} so that $\dot{\alpha}_{k}$ is closer to D_{1}^{*} than $\dot{\alpha}_{k+1}(k=1, \cdots, m-1)$ (see Figure 5 for a case that $m=3$). We eliminate the singularities $\alpha_{1}, \cdots, \alpha_{m}$ in this order by self Δ-moves on K_{1}.

Figure 5

Step P1a: Let b_{1} be the open sub-band of U whose ends are α_{1} and $\partial B_{1} \cap \partial D_{1}$. Since the Δ-move is an unknotting operation [4], b_{1} can be transformed into the unknot by using the transformations as illustrated in Figure 4. Here an open sub-band b whose ends are on a disk D is unknotted if there is a disk δ such that the intersections $\delta \cap b=\partial \delta \cap b$ and $\delta \cap D=\partial \delta \cap D$ are complementary two arcs of $\partial \delta$, where the other open sub-bands may intersect with δ (see Figure 6). If an open sub-band which belongs to B_{1} intersects with the disk δ for b_{1}, then we can remove the open sub-band out of δ by the transformations as illustrated in Figure 4. If we still have open sub-bands which intersect with the disk δ for b_{1}, then isotop these sub-bands out of δ and eliminate α_{1} as illustrated in Figure 6. Then the band whose original ends are α_{1} and α_{2} has now $\partial B_{1} \cap \partial D_{1}$ and α_{2} as its ends, and thus U has one fewer components than that of the before the process. Note that the open sub-bands of U are all well-situated with respect to D_{1}, and that the open sub-bands of $U \cap B_{1}$ do not intersect with D_{1}.

Figure 6
Step P1b: Assuming that we have eliminated singularities $\alpha_{1}, \cdots, a_{k-1}(k=2, \cdots, m)$, that the open sub-bands of U are all well-situated with respect to D_{1}, and that the open sub-bands of $U \cap B_{1}$ do not intersect with D_{1}, take a look at α_{k} and let b_{k} be the open sub-band of U whose ends are α_{k} and $\partial B_{1} \cap \partial D_{1}$. Similarly to Step P1a, transform b_{k} into the unknot by using the transformations as illustrated in Figure 4. However here we need to isotop the bands which do not belong to B_{1} but intersect with D_{1} before and after the transformations as illustrated in Figure 7 so that we can apply self Δ-moves. Then eliminating α_{k} similarly to Step P1a, we have that the band whose original ends are α_{k} and α_{k+1} has now $\partial B_{1} \cap \partial D_{1}$ and α_{k+1} as its ends $\left(\alpha_{m+1}=B_{1} \cap S\right)$, and thus U has one fewer components than that of the before the process. Note that the open sub-bands of U are all well-situated with respect to D_{1}, and that the open sub-bands of $U \cap B_{1}$ do not intersect with D_{1}.

Figure 7

Applying the above processes, we eliminate the singularities $\alpha_{1}, \cdots, \alpha_{m}$ and thus we can shrink B_{1} so that $B_{1} \cap D_{1}=\partial B_{1} \cap \partial D_{1}$ is an arc on S.

Step P2: Assuming that $B_{j} \cap D_{j}=\partial B_{j} \cap \partial D_{j}$ is an arc on $S(j=1, \cdots, k-1)$ and that each open sub-band of U is well-situated with respect to $\mathcal{D}_{k-1}=D_{1} \cup \cdots \cup D_{k-1}$, transform $\mathcal{B} \cup \mathcal{D}$ so that $B_{k} \cap D_{k}=\partial B_{k} \cap \partial D_{k}$ is an arc on S and that each open sub-band of U is well-situated with respect to $D_{1} \cup \cdots \cup D_{k}(k=2, \cdots, n-1)$. This can be done similarly to Step P1 except we remove all the sigularities of $\mathcal{S}\left(b \cap \mathcal{D}_{k-1}\right)$ before transforming b into the unknot when we eliminate a singularity α, where b is the open sub-band of U whose ends are α and $\partial B_{k} \cap \partial D_{k}$. Note that each sub-band bounded by an innermost intersection pair of $\mathcal{S}\left(b \cap \mathcal{D}_{k-1}\right)$ is unknotted from the construction, and thus there is a disk δ such that the intersections $\delta \cap b=\partial \delta \cap b$ and $\delta \cap D_{j}=\partial \delta \cap D_{j}$ are complementary two arcs of $\partial \delta$. Open sub-bands belonging to $B_{k} \cup \cdots \cup B_{n}$ may intersect with δ. Remove the intersections of $B_{k} \cap \delta$ by using the transformations as illustrated in Figure 4 or in Figure 7, and elminate the innermost intersection pair by isotoping b along δ out of D_{k} (this isotopy may creat new innermost intersection pairs for open sub-bands belonging to $\left.B_{k+1} \cup \cdots \cup B_{n}\right)$.

Step P3: We have that $B_{i} \cap D_{i}=\partial B_{i} \cap \partial D_{i}$ is an arc on $S(i=1, \cdots, n-1)$ and $U \cap \mathcal{B}=U \cap B_{n}$, and that each open sub-band of U is well-situated with respect to $D_{1} \cup \cdots \cup D_{n-1}$. Transform $\mathcal{B} \cup \mathcal{D}$ so that $B_{n} \cap D_{n}=\partial B_{n} \cap \partial D_{n}$ is an arc on S and that U is the empty set similarly to Steps P1 and P2. Then $(\ell \circ \partial \mathcal{D}) \oplus \partial \mathcal{B}$ is ambient isotopic to ℓ. Hence the proof is complete.

The idea of the proof of Theorem 1.1 is the same as that of the proof of Proposition 2.1, and thus we prove Theorem 1.1 by referring the proof of Proposition 2.1.

Proof of Theorem 1.1. Since each D_{j} is a ribbon disk, we can deform $B_{j} \cup D_{j}$ into a union $\left(B_{j}^{0} \cup D_{j}^{0}\right) \cup\left(B_{j}^{1} \cup D_{j}^{1}\right) \cup \cdots \cup\left(B_{j}^{m_{j}} \cup D_{j}^{m_{j}}\right)$ of bands $\mathcal{B}_{j}=B_{j}^{0} \cup B_{j}^{1} \cup \cdots \cup B_{j}^{m_{j}}$ and disks $\mathcal{D}_{j}=D_{j}^{0} \cup D_{j}^{1} \cup \cdots \cup D_{j}^{m_{j}}$ satisfying the following $(j=1, \cdots, n)$ ([1]) (see Figure 8 for an example of the pre-image $\mathcal{B}_{1}^{*} \cup \mathcal{D}_{1}^{*}$):
(i) $B_{j}^{0}=B_{j}$ and B_{j}^{i} connects ∂D_{j}^{0} and $\partial D_{j}^{i}\left(i=1, \cdots, m_{j}\right)$; and
(ii) Each $D_{j}^{k *}$ contains only i-lines and each $B_{j}^{k *}$ contains only b-lines $\left(k=0, \cdots, m_{j}\right)$.

Figure 8

Moreover note that each $\mathcal{B}_{j} \cup \mathcal{D}_{j}$ has only self-intersections, that is, B_{j}^{k} intersects only with \mathcal{D}_{j}, since L is a separate ribbon link. Let $\ell=k_{1} \cup \cdots \cup k_{n}, \ell \# L=K_{1} \cup \cdots \cup K_{n}$, where $K_{j}=\left(k_{j} \circ \partial D_{j}\right) \oplus \partial B_{j}$. We show that $\ell \# L$ can be transformed into ℓ by applying self Δ-moves to K_{1}, \cdots, K_{n} in this order.
First, for each band $B_{j}^{k}(k \neq 0)$, remove intersections of B_{j}^{k} and D_{j}^{l} with $l \neq k$ by using the transformations as illustrated in Figure 4 (a). Then we have that B_{j}^{k} (resp. D_{j}^{0}) intersects only with $D_{j}^{k}\left(\right.$ resp. $\left.B_{j}^{0}\right)$ and that $D_{j}^{k}\left(\right.$ resp. $\left.B_{j}^{0}\right)$ intersects with B_{j}^{0} and B_{j}^{k} (resp. \mathcal{D}_{j}). Each band B_{j}^{k} and B_{j}^{0} in int S is divided into open sub-bands by D_{j}^{k} and \mathcal{D}_{j}, respectively. Let U be the set of all such open sub-bands, that is, $U=\cup_{j}\left(\left(\left(B_{j}^{0} \cap \operatorname{int} S\right)-\mathcal{D}_{j}\right) \cup \cup_{k \neq 0}\left(\left(B_{j}^{k} \cap \operatorname{int} S\right)-D_{j}^{k}\right)\right)$. We define well-situatedness of an element of U with respect to a subset of $\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}$ as before.

Step T1: Take a look at the singularities $\alpha_{1}, \cdots, \alpha_{m}$ of B_{1}^{1}, where pre-images $\dot{\alpha}_{1}, \cdots, \dot{\alpha}_{m}$ on $B_{1}^{1 *}$ are positioned so that $\dot{\alpha}_{t}$ is closer to $D_{1}^{1 *}$ than $\dot{\alpha}_{t+1}(t=1, \cdots, m-1)$. We eliminate the singularities $\alpha_{1}, \cdots, \alpha_{m}$ in this order by self Δ-moves on K_{1}.
Step T1a: Let b_{1} be the open sub-band of U whose ends are α_{1} and $\partial B_{1}^{1} \cap \partial D_{1}^{1}$. Transform b_{1} into the unknot by using the transformations as illustrated in Figure 4 as in Step P1a of the proof of Proposition 2.1. If an open sub-band which belongs to \mathcal{B}_{1} intersects with the disk δ for b_{1}, then remove the open sub-band out of δ by the transformations as illustrated in Figure 4. If we still have open sub-bands which intersect with the disk δ for b_{1}, then isotop these sub-bands out of δ and eliminate α_{1} as illustrated in Figure 6. Then the band whose original ends are α_{1} and α_{2} has now $\partial B_{1}^{1} \cap \partial D_{1}^{1}$ and α_{2} as its ends, and thus U has one fewer components than that of the before the process. Note that the open sub-bands of U are all well-situated with respect to D_{1}^{1}, and that the open sub-bands of $U \cap \mathcal{B}_{1}$ do not intersect with D_{1}^{1}.
Step T1b: Assuming that we have eliminated singularities $\alpha_{1}, \cdots, a_{t-1}(t=2, \cdots, m)$, that the open sub-bands of U are all well-situated with respect to D_{1}^{1}, and that the open sub-bands of $U \cap \mathcal{B}_{1}$ do not intersect with D_{1}^{1}, take a look at α_{t} and let b_{t} be the open sub-band of U whose ends are α_{t} and $\partial B_{1}^{1} \cap \partial D_{1}^{1}$. Similarly to Step P1b of the proof of Proposition 2.1, transform b_{t} into the unknot by using the transformations as illustrated in Figure 4 or in Figure 7. Then eliminating α_{t} similarly to Step T1a, we have that the band whose original ends are α_{t} and α_{t+1} has now $\partial B_{1}^{1} \cap \partial D_{1}^{1}$ and α_{t+1} as its ends $\left(\alpha_{m+1}=B_{1}^{1} \cap S\right)$, and thus U has one fewer components than that of the before the process. Note that the open sub-bands of U are all well-situated with respect to D_{1}^{1}, and that the open sub-bands of $U \cap \mathcal{B}_{1}$ do not intersect with D_{1}^{1}.
Applying the above processes, there are no singularities on B_{1}^{1}. Thus we merge D_{1}^{1} and D_{1}^{0} into D_{1}^{0} by shrinking B_{1}^{1}.
Step T1c: Applying Step T1a and Step T1b to $B_{1}^{2}, \cdots, B_{1}^{m_{1}}$, we have that $B_{1}^{0}=B_{1}$ and $D_{1}^{0}=D_{1}$, that B_{1} intersects only with D_{1}, and that the open sub-bands of U are all wellsituated with respect to D_{1}. Then we can elminate all the singularities of $B_{1} \cap D_{1}$ similarly to Step T1b. Thus we can shrink B_{1} so that $B_{1} \cap D_{1}=\partial B_{1} \cap \partial D_{1}$ is an arc on S.

Step T2: Similarly to Step P2 and Step P3, we eliminate the singularities on B_{j}^{k} and merge D_{j}^{k} and D_{j}^{0} into D_{j}^{0} by shrinking $B_{j}^{k}\left(j=2, \cdots, n, k=1, \cdots, m_{j}\right)$, and then eliminate the singularities on B_{j}^{0} and shrink $B_{j}^{0}=B_{j}$ so that $B_{j} \cap D_{j}=\partial B_{j} \cap \partial D_{j}$ is an arc on S. Then $(\ell \circ \partial \mathcal{D}) \oplus \partial \mathcal{B}$ is ambient isotopic to ℓ. Hence the proof is complete.

References

[1] A. Kawauchi, T. Shibuya, and S. Suzuki, Descriptions on surfaces in four-space. I. Normal forms, Math. Sem. Notes Kobe Univ., 10 (1982), 75-125.
[2] K. Kobayashi, K. Kodama, and T. Shibuya, Ribbon link and separate ribbon link, J. Knot Theory Ramifications, 12 (2003), 105-116.
[3] S.V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology sphere (in Russian), Mat. Zametki, 42 (1987), 651-656.
[4] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284 (1989), 75-89.
[5] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links. III, J. Math. Soc. Japan, 55 (2003), 641-654.
[6] Y. Nakanishi, and T. Shibuya, Link homotopy and quasi self delta-equivalence for links, J. Knot Theory Ramifications, 9 (2000), 683-691.
[7] Y. Nakanishi, and T. Shibuya, and A. Yasuhara, Self delta-equivalence of cobordant links, Proc. Amer. Math. Soc., 134 (2006), 2465-2472.
[8] T. Shibuya, Self Δ-equivalence of ribbon links, Osaka J. Math., 33 (1996), 751-760.
[9] T. Shibuya, and A. Yasuhara, Boundary links are self delta-equivalent to trivial links, Math. Proc. Cambridge Philos. Soc., 143 (2007), 449-458.
[10] A. Yasuhara, Self delta-equivalence for links whose Milnor's isotopy invariants vanish, Trans. Amer. Math. Soc., 361 (2009), 4721-4749.

