Memoirs of the Osaka Institute of Technology, Series A Vol. 55, No. 1(2010) pp. 25 ~ 28

Self Pass-Equivalence of Z₂-algebraically Split Links by Tetsuo SHIBUYA, Tatsuya TSUKAMOTO

Department of General Education, Faculty of Engineering (Manuscript received May 31, 2010)

Memoirs of the Osaka Institute of Technology, Series A Vol. 55, No. 1 (2010) pp. 25~28

Self Pass-Equivalence of Z_2 -algebraically Split Links by Tetsuo SHIBUYA¹, Tatsuya TSUKAMOTO²

Department of General Education, Faculty of Engineering (Manuscript received May 31, 2010)

Abstract

In this paper, we study self pass-equivalence of Z_2 -algebraically split links that are obtained by *n*-fusions of Z_2 -link homologous links with *n*-components. In addition, we show that ribbon links with the Brunnian property are free self pass-trivial.

Keywords; knots, links, self pass-moves, fusions

¹ partially supported by JSPS, Grant-in-Aid for Scientific Research (C) (#22540104).

² partially supported by JSPS, Grant-in-Aid for Young Scientists (B) (#22740050).

1. INTRODUCTION

All links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in a 3-space \mathbb{R}^3 . A *pass-move* is a local move on links as illustrated in Figure 1. If the four strands in the figure belong to the same component of a link, we call it a *self passmove*. For two links ℓ and ℓ' , we say that ℓ is *self pass-equivalent to* ℓ' , or that ℓ and ℓ' are *self pass-equivalent* if ℓ can be transformed into ℓ' by a finite sequence of self pass-moves ([4]).

FIGURE 1

If two links ℓ and ℓ' are *split* in \mathbb{R}^3 , that is, there is a 3-ball D^3 in \mathbb{R}^3 such that $D^3 \cap (\ell \cup \ell') = \ell$, then we denote the link $\ell \cup \ell'$ by $\ell \circ \ell'$. Let $\ell = k_1 \cup \cdots \cup k_n$ and $\ell' = k'_1 \cup \cdots \cup k'_n$ be *n*-component links which are split and let $\mathcal{B} = B_1 \cup \cdots \cup B_n$ be a disjoint union of disks such that $B_i \cap \ell = \partial B_i \cap k_i$ (resp. $B_i \cap \ell' = \partial B_i \cap k'_i$) is an arc for each *i*. Then the link $L = (\ell \circ \ell') \oplus \partial \mathcal{B}$ is called a *link obtained by an n-fusion* (or a *band sum*) of $\ell \circ \ell'$, and denoted by $\ell \# \ell'$ or simply by $\ell \# \ell'$, where \oplus means the homological addition. We denote the band obtained \mathcal{B} from B_i by operating p_i -full twists by $B_i^{p_i}$ (See Figure 2) and denote $(\ell \circ \ell') \oplus \partial \mathcal{B}'$ by $L_{p_1 \cdots p_n}$, where $\mathcal{B}' = B_1^{p_1} \cup \cdots \cup B_n^{p_n}$. Note that $L_{p_1 \cdots p_n}$ is link homotopic to L.

FIGURE 2

Two links $\ell = k_1 \cup \cdots \cup k_n$ and $\ell' = k'_1 \cup \cdots \cup k'_n$ are said to be Z_2 -link homologous if $lk(k_i, k_j) \equiv lk(k'_i, k'_j) \pmod{2}$ for each i and j $(i \neq j)$. If ℓ and ℓ' are Z_2 -link homologous, then $\ell \# \ell' = K_1 \cup \ldots \cup K_n$ is Z_2 -algebraically split, that is, $lk(K_i, K_j) \equiv 0 \pmod{2}$. Then we have the following.

Theorem 2.4. Let $\ell = k_1 \cup \cdots \cup k_n$ and ℓ' be n-component Z_2 -link homologous links. If $lk(k_i, k_j) \equiv 1 \pmod{2}$ and $p_i \equiv p_j \pmod{2}$ for each $i, j \ (i \neq j)$, then $L = \ell \# \ell'$ and $L_{p_1 \cdots p_n}$ are self pass-equivalent.

An *n*-component link $\ell = k_1 \cup \cdots \cup k_n$ is said to be *free self pass-trivial* if each k_i is self pass-equivalent to the trivial knot in $\mathbb{R}^3 - (\ell - k_i)$. A link ℓ is said to be with *Brunnian property* if $\ell - k$ is trivial for each component k of ℓ . Then we have the following.

Theorem 3.3. If ℓ is a ribbon link with Brunnian property, then ℓ is free self pass-trivial.

2. Self pass-equivalence of Z_2 -algebraically split links

A link ℓ is said to be *proper* if $lk(k, \ell - k) \equiv 0 \pmod{2}$ for each component k of ℓ . If ℓ is proper, then the Arf invariant $\varphi(\ell)$ is well-defined ([3]). The following is shown in [4].

Lemma 2.1([4], Lemma 2.6). Let $\ell = k_1 \cup k_2$ and $\ell' = k'_1 \cup k'_2$ be 2-component split links and $L = \ell \# \ell'$ and $L' = L_{01}$ or L_{10} . If $lk(k_1, k_2) \equiv lk(k'_1, k'_2) \equiv 1 \pmod{2}$, then L and L' are proper and link-homotopic, and $\varphi(L) \neq \varphi(L')$.

Lemma 2.2. Let $\ell = k_1 \cup k_2$ and $\ell' = k'_1 \cup k'_2$ be 2-component split links and $L = \ell \# \ell'$ and $L' = L_{p_1p_2}$. If $lk(k_1, k_2) \equiv lk(k'_1, k'_2) \pmod{2}$, then we have the following;

- (i) If $lk(k_1, k_2) \equiv 0 \pmod{2}$, then $\varphi(L) = \varphi(L')$.
- (ii) If $lk(k_1, k_2) \equiv 1 \pmod{2}$, then $\varphi(L) = \varphi(L')$ if and only if $p_1 \equiv p_2 \pmod{2}$.

Proof. If $lk(k_1, k_2) \equiv 0 \pmod{2}$, then ℓ and ℓ' are proper and thus $\ell \circ \ell'$ is proper. Hence $\varphi(L) = \varphi(L')$ ([3]). Consider the case when $lk(k_1, k_2) \equiv 1 \pmod{2}$. Note that a self pass-move does not change the Arf invariant of a proper link. Thus it is sufficient to consider the case when $0 \leq p_1, p_2 \leq 1$, since ± 2 -full twists of a bands can be removed by a self pass-move as illustrated in Figure 3. If $p_1 \neq p_2 \pmod{2}$, then $(p_1, p_2) = (0, 1)$ or (1, 0) and thus $\varphi(L) \neq \varphi(L')$ by Lemma 2.1. Conversely, suppose that $p_1 \equiv p_2 \pmod{2}$. In this case, $(p_1, p_2) = (0, 0)$ or (1, 1). In the former case, $L' = L_{00} = L$ and thus $\varphi(L) = \varphi(L')$. In the latter case, $L' = L_{11}$ and $\varphi(L) \neq \varphi(L_{01})$ and $\varphi(L_{01}) \neq \varphi(L_{11}) = \varphi(L')$ by Lemma 2.1. Hence $\varphi(L) = \varphi(L')$.

FIGURE 3

The following is also shown in [4].

Lemma 2.3([4], Corollary 1.3 (i)). Let $L = K_1 \cup ... \cup K_n, L' = K'_1 \cup ... \cup K'_n$ be n-component Z_2 -algebraically split links. Then L and L' are self pass-equivalent if and only if L and L' are link-homotopic, $\varphi(K_i) = \varphi(K'_i)$ for each i, and $\varphi(K_i \cup K_j) = \varphi(K'_i \cup K'_j)$ for each i, j $(1 \leq i < j \leq n)$.

Proof of Theorem 2.4. Since ℓ and ℓ' are Z_2 -link homologous, L and $L'(=L_{p_1\cdots p_n})$ are Z_2 algebraically split links and link-homotopic. Since each knot K_i of L and K'_i of L' are obtained by fusions of $k_i \circ k'_i, \varphi(K_i) = \varphi(K'_i)$. Moreover we see that $\varphi(K_i \cup K_j) = \varphi(K'_i \cup K'_j)$ by the assumption of Theorem 2.4 and Lemma 2.2. Hence L and L' are self pass-equivalent by Lemma 2.3.

3. Free self pass-equivalence of ribbon links with Brunnian property.

There is a ribbon link which is not free self pass-equivalent to trivial. For example, let k be a non-trivial ribbon knot and ℓ a non-twisted pararell link of k. Then ℓ is a ribbon link. However, ℓ is not free h-trivial from Remark 1.2 (1) of [1], and thus ℓ is not free self pass-trivial. Here a link ℓ is free h-trivial if, for each component k of ℓ , k is homotopic to trivial in $\mathbb{R}^3 - (\ell - k)$.

Lemma 3.1([1], Corollary 1.7). Any ribbon link with Brunnian property is free h-trivial.

Lemma 3.2([2], Lemma 2.1). If a link $\ell = k_1 \cup \cdots \cup k_n$ is free h-trivial and $\varphi(k_i) = \varphi(k_i \cup k_j) = 0$ for each $i, j (i \neq j)$, then ℓ is free self pass-trivial.

Proof of Theorem 3.3. If $\ell = k_1 \cup \cdots \cup k_n$ is a ribbon link, then it is easy to see that $\varphi(k_i) = \varphi(k_i \cup k_j) = 0$ for each $i, j(i \neq j)$. Hence we have the conclusion by Lemma 3.1 and Lemma 3.2.

Example 3.4. Since the link \mathcal{L}_n as illustrated in Figure 4 is a ribbon link with Brunnian property, \mathcal{L}_n is free self pass-equivalent to trivial for any integer *n* by Theorem 3.3.

FIGURE 4

References

- T. Fleming, T. Shibuya, T. Tsukamoto, and A. Yasuhara, Homotopy, Δ-equivalence and concordance for knots in the complement of a trivial link, Topology Appl, 157 (2010), 1215–1227.
- [2] Y. Nakanishi, T. Shibuya, and T. Tsukamoto, Free self delta-triviality of delta-spilt links, J. Knot Theory Ramifications, 18 (2009), 1539–1549.
- [3] R.A. Robertello, An invariant of knot cobordism, Comm. Pure and Appl. Math., 18 (1965), 543–555.
- [4] T. Shibuya and A. Yasuhara, Classification of links up to self pass-move, J. Math. Soc. Japan, 55 (2003), 939–946.