Self Pass-Equivalence of Z_{2}-algebraically Split Links by
 Tetsuo SHIBUYA, Tatsuya TSUKAMOTO

Department of General Education, Faculty of Engineering
(Manuscript received May 31, 2010)

Self Pass-Equivalence of Z_{2}-algebraically Split Links by
Tetsuo SHIBUYA ${ }^{1}$, Tatsuya TSUKAMOTO ${ }^{2}$
Department of General Education, Faculty of Engineering
(Manuscript received May 31, 2010)

Abstract

In this paper, we study self pass-equivalence of Z_{2}-algebraically split links that are obtained by n-fusions of Z_{2}-link homologous links with n-components. In addition, we show that ribbon links with the Brunnian property are free self pass-trivial.

Keywords; knots, links, self pass-moves, fusions

[^0]
1. Introduction

All links are assumed to be ordered and oriented, and they are considered up to ambient isotopy in a 3 -space \mathbb{R}^{3}. A pass-move is a local move on links as illustrated in Figure 1. If the four strands in the figure belong to the same component of a link, we call it a self passmove. For two links ℓ and ℓ^{\prime}, we say that ℓ is self pass-equivalent to ℓ^{\prime}, or that ℓ and ℓ^{\prime} are self pass-equivalent if ℓ can be transformed into ℓ^{\prime} by a finite sequence of self pass-moves ([4]).

Figure 1
If two links ℓ and ℓ^{\prime} are split in \mathbb{R}^{3}, that is, there is a 3 -ball D^{3} in \mathbb{R}^{3} such that $D^{3} \cap\left(\ell \cup \ell^{\prime}\right)$ $=\ell$, then we denote the link $\ell \cup \ell^{\prime}$ by $\ell \circ \ell^{\prime}$. Let $\ell=k_{1} \cup \cdots \cup k_{n}$ and $\ell^{\prime}=k_{1}^{\prime} \cup \cdots \cup k_{n}^{\prime}$ be n-component links which are split and let $\mathcal{B}=B_{1} \cup \cdots \cup B_{n}$ be a disjoint union of disks such that $B_{i} \cap \ell=\partial B_{i} \cap k_{i}$ (resp. $B_{i} \cap \ell^{\prime}=\partial B_{i} \cap k_{i}^{\prime}$) is an arc for each i. Then the link $L=$ $\left(\ell \circ \ell^{\prime}\right) \oplus \partial \mathcal{B}$ is called a link obtained by an n-fusion (or a band sum) of $\ell \circ \ell^{\prime}$, and denoted by $\ell \# \ell^{\prime}$ or simply by $\ell \# \ell^{\prime}$, where \oplus means the homological addition. We denote the band obtained from B_{i} by operating p_{i}-full twists by $B_{i}^{p_{i}}$ (See Figure 2) and denote $\left(\ell \circ \ell^{\prime}\right) \oplus \partial \mathcal{B}^{\prime}$ by $L_{p_{1} \cdots p_{n}}$, where $\mathcal{B}^{\prime}=B_{1}^{p_{1}} \cup \cdots \cup B_{n}^{p_{n}}$. Note that $L_{p_{1} \cdots p_{n}}$ is link homotopic to L.

Figure 2
Two links $\ell=k_{1} \cup \cdots \cup k_{n}$ and $\ell^{\prime}=k_{1}^{\prime} \cup \cdots \cup k_{n}^{\prime}$ are said to be Z_{2}-link homologous if $\operatorname{lk}\left(k_{i}, k_{j}\right) \equiv \operatorname{lk}\left(k_{i}^{\prime}, k_{j}^{\prime}\right)(\bmod 2)$ for each i and $j(i \neq j)$. If ℓ and ℓ^{\prime} are Z_{2}-link homologous, then $\ell \# \ell^{\prime}=K_{1} \cup \ldots \cup K_{n}$ is Z_{2}-algebraically split, that is, $\operatorname{lk}\left(K_{i}, K_{j}\right) \equiv 0(\bmod 2)$. Then we have the following.

Theorem 2.4. Let $\ell=k_{1} \cup \cdots \cup k_{n}$ and ℓ^{\prime} be n-component Z_{2}-link homologous links. If $\operatorname{lk}\left(k_{i}, k_{j}\right) \equiv 1(\bmod 2)$ and $p_{i} \equiv p_{j}(\bmod 2)$ for each $i, j(i \neq j)$, then $L=\ell \# \ell^{\prime}$ and $L_{p_{1} \cdots p_{n}}$ are self pass-equivalent.

An n-component link $\ell=k_{1} \cup \cdots \cup k_{n}$ is said to be free self pass-trivial if each k_{i} is self pass-equivalent to the trivial knot in $\mathbb{R}^{3}-\left(\ell-k_{i}\right)$. A link ℓ is said to be with Brunnian property if $\ell-k$ is trivial for each component k of ℓ. Then we have the following.

Theorem 3.3. If ℓ is a ribbon link with Brunnian property, then ℓ is free self pass-trivial.

2. SELF PASS-EQUIVALENCE OF Z_{2}-ALGEBRAICALLY SPLIT LINKS

A link ℓ is said to be proper if $\operatorname{lk}(k, \ell-k) \equiv 0(\bmod 2)$ for each component k of ℓ. If ℓ is proper, then the Arf invariant $\varphi(\ell)$ is well-defined ([3]). The following is shown in [4].

Lemma 2.1([4], Lemma 2.6). Let $\ell=k_{1} \cup k_{2}$ and $\ell^{\prime}=k_{1}^{\prime} \cup k_{2}^{\prime}$ be 2-component split links and $L=\ell \# \ell^{\prime}$ and $L^{\prime}=L_{01}$ or L_{10}. If $1 \mathrm{k}\left(k_{1}, k_{2}\right) \equiv \operatorname{lk}\left(k_{1}^{\prime}, k_{2}^{\prime}\right) \equiv 1(\bmod 2)$, then L and L^{\prime} are proper and link-homotopic, and $\varphi(L) \neq \varphi\left(L^{\prime}\right)$.

Lemma 2.2. Let $\ell=k_{1} \cup k_{2}$ and $\ell^{\prime}=k_{1}^{\prime} \cup k_{2}^{\prime}$ be 2 -component split links and $L=\ell \not \ell^{\prime}$ and $L^{\prime}=L_{p_{1} p_{2}}$. If $\operatorname{lk}\left(k_{1}, k_{2}\right) \equiv \operatorname{lk}\left(k_{1}^{\prime}, k_{2}^{\prime}\right)(\bmod 2)$, then we have the following;
(i) If $1 \mathrm{k}\left(k_{1}, k_{2}\right) \equiv 0(\bmod 2)$, then $\varphi(L)=\varphi\left(L^{\prime}\right)$.
(ii) If $1 \mathrm{k}\left(k_{1}, k_{2}\right) \equiv 1(\bmod 2)$, then $\varphi(L)=\varphi\left(L^{\prime}\right)$ if and only if $p_{1} \equiv p_{2}(\bmod 2)$.

Proof. If $1 \mathrm{k}\left(k_{1}, k_{2}\right) \equiv 0(\bmod 2)$, then ℓ and ℓ^{\prime} are proper and thus $\ell \circ \ell^{\prime}$ is proper. Hence $\varphi(L)=\varphi\left(L^{\prime}\right)([3])$. Consider the case when $\operatorname{lk}\left(k_{1}, k_{2}\right) \equiv 1(\bmod 2)$. Note that a self pass-move does not change the Arf invariant of a proper link. Thus it is sufficient to consider the case when $0 \leq p_{1}, p_{2} \leq 1$, since ± 2-full twists of a bands can be removed by a self pass-move as illustrated in Figure 3. If $p_{1} \not \equiv p_{2}(\bmod 2)$, then $\left(p_{1}, p_{2}\right)=(0,1)$ or $(1,0)$ and thus $\varphi(L) \neq \varphi\left(L^{\prime}\right)$ by Lemma 2.1. Conversely, suppose that $p_{1} \equiv p_{2}(\bmod 2)$. In this case, $\left(p_{1}, p_{2}\right)=(0,0)$ or $(1,1)$. In the former case, $L^{\prime}=L_{00}=L$ and thus $\varphi(L)=\varphi\left(L^{\prime}\right)$. In the latter case, $L^{\prime}=L_{11}$ and $\varphi(L) \neq \varphi\left(L_{01}\right)$ and $\varphi\left(L_{01}\right) \neq \varphi\left(L_{11}\right)=\varphi\left(L^{\prime}\right)$ by Lemma 2.1. Hence $\varphi(L)=\varphi\left(L^{\prime}\right)$.

Figure 3
The following is also shown in [4].
Lemma 2.3([4], Corollary 1.3 (i)). Let $L=K_{1} \cup \ldots \cup K_{n}, L^{\prime}=K_{1}^{\prime} \cup \cdots \cup K_{n}^{\prime}$ be n-component Z_{2}-algebraically split links. Then L and L^{\prime} are self pass-equivalent if and only if L and L^{\prime} are link-homotopic, $\varphi\left(K_{i}\right)=\varphi\left(K_{i}^{\prime}\right)$ for each i, and $\varphi\left(K_{i} \cup K_{j}\right)=\varphi\left(K_{i}^{\prime} \cup K_{j}^{\prime}\right)$ for each i, j $(1 \leq i<j \leq n)$.

Proof of Theorem 2.4. Since ℓ and ℓ^{\prime} are Z_{2}-link homologous, L and $L^{\prime}\left(=L_{p_{1} \cdots p_{n}}\right)$ are $Z_{2^{-}}$ algebraically split links and link-homotopic. Since each knot K_{i} of L and K_{i}^{\prime} of L^{\prime} are obtained by fusions of $k_{i} \circ k_{i}^{\prime}, \varphi\left(K_{i}\right)=\varphi\left(K_{i}^{\prime}\right)$. Moreover we see that $\varphi\left(K_{i} \cup K_{j}\right)=\varphi\left(K_{i}^{\prime} \cup K_{j}^{\prime}\right)$ by the assumption of Theorem 2.4 and Lemma 2.2. Hence L and L^{\prime} are self pass-equivalent by Lemma 2.3.

3. Free self pass-equivalence of ribbon links with Brunnian property.

There is a ribbon link which is not free self pass-equivalent to trivial. For example, let k be a non-trivial ribbon knot and ℓ a non-twisted pararell link of k. Then ℓ is a ribbon link. However, ℓ is not free h-trivial from Remark $1.2(1)$ of [1], and thus ℓ is not free self pass-trivial. Here a link ℓ is free h-trivial if, for each component k of ℓ, k is homotopic to trivial in $\left.R^{3}-(\ell-k)\right)$.

Lemma 3.1([1], Corollary 1.7). Any ribbon link with Brunnian property is free h-trivial.
Lemma 3.2([2], Lemma 2.1). If a link $\ell=k_{1} \cup \cdots \cup k_{n}$ is free h-trivial and $\varphi\left(k_{i}\right)=\varphi\left(k_{i} \cup k_{j}\right)=0$ for each $i, j(i \neq j)$, then ℓ is free self pass-trivial.

Proof of Theorem 3.3. If $\ell=k_{1} \cup \cdots \cup k_{n}$ is a ribbon link, then it is easy to see that $\varphi\left(k_{i}\right)=$ $\varphi\left(k_{i} \cup k_{j}\right)=0$ for each $i, j(i \neq j)$. Hence we have the conclusion by Lemma 3.1 and Lemma 3.2.

Example 3.4. Since the link \mathcal{L}_{n} as illustrated in Figure 4 is a ribbon link with Brunnian property, \mathcal{L}_{n} is free self pass-equivalent to trivial for any integer n by Theorem 3.3.

Figure 4

References

[1] T. Fleming, T. Shibuya, T. Tsukamoto, and A. Yasuhara, Homotopy, Δ-equivalence and concordance for knots in the complement of a trivial link, Topology Appl, 157 (2010), 1215-1227.
[2] Y. Nakanishi, T. Shibuya, and T. Tsukamoto, Free self delta-triviality of delta-spilt links, J. Knot Theory Ramifications, 18 (2009), 1539-1549.
[3] R.A. Robertello, An invariant of knot cobordism, Comm. Pure and Appl. Math., 18 (1965), 543-555.
[4] T. Shibuya and A. Yasuhara, Classification of links up to self pass-move, J. Math. Soc. Japan, 55 (2003), 939-946.

[^0]: 1 partially supported by JSPS, Grant-in-Aid for Scientific Research (C) (\#22540104).
 2 partially supported by JSPS, Grant-in-Aid for Young Scientists (B) (\#22740050).

