Memoirs of the Osaka Institute of Technology, Series A Vol. 56, No. 1 (2011) pp. 25~31

Self delta-equivalence of algebraically split links by

Tetsuo SHIBUYA¹, Tatsuya TSUKAMOTO²

Department of General Education, Faculty of Engineering
(Manuscript received May 24, 2011)

Abstract

It is known that any algebraically split link is Δ -equivalent to a trivial link, where a link is algebraically split if the linking number of each 2-component sublink of it vanishes. However, it is also known that there is an algebraically split link which is not self Δ -equivalent to a trivial link. In this paper, we give two sufficient conditions for an algebraically split link to be self Δ -equivalent to a trivial link.

Keywords; knots, links, self delta-moves

l partially supported by JSPS, Grant-in-Aid for Scientific Research (C) (#22540104). 2 partially supported by The Sumitomo Foundation (090729).

1. Introduction

Throughout the paper, links are tame and oriented in an oriented 3-space \mathbb{R}^3 and they are considered up to ambient isotopy of \mathbb{R}^3 .

A local move on links as illustrated in Figure 1 is called a Δ -move. If the three strands in the figure belong to the same component, then it is called a $self \Delta$ -move. If a link ℓ can be transformed into a trivial link by a finite sequence of Δ -moves (resp. $self \Delta$ -moves), then we say that ℓ is Δ -equivalent (resp. $self \Delta$ -equivalent) to a trivial link.

Figure 1

An *n*-component link $L = K_1 \cup \cdots \cup K_n$ is said to be algebraically split if the linking number, denoted by $lk(K_i, K_j)$, is zero for each i and j ($i \neq j$). Then the following is shown in [3].

Proposition 1.1. A link L is Δ -equivalent to a trivial link if and only if L is algebraically split.

However, in general, algebraically split links are not self Δ -equivalent to trivial links. For example, the Whitehead link and the Borromean rings are algebraically split, but not self Δ -equivalent to trivial links. In this paper, we give two sufficient conditions for an algebraically split link to be self Δ -equivalent to a trivial link (Theorem 3.3 and Theorem 3.7).

2. Self Δ -equivalence of strongly related links.

In this section, we show two lemmas which we use to prove the theorems.

For two links $L(\subset \mathbb{R}^3 \times \{a\})$ and $L'(\subset \mathbb{R}^3 \times \{b\})$, L is said to be related to L' if there is a disjoint union $\mathcal{F} = F_1 \cup \cdots \cup F_m(\subset \mathbb{R}^3 \times [a,b])$ of locally flat non-singular orientable surfaces of genus 0 such that $\mathcal{F} \cap (\mathbb{R}^3 \times \{a\}) = L$, $\mathcal{F} \cap (\mathbb{R}^3 \times \{b\}) = -L'$ and $F_i \cap (\mathbb{R}^3 \times \{a\}) \neq \emptyset$, $F_i \cap (\mathbb{R}^3 \times \{b\}) \neq \emptyset$ for each i, where -L' is the reflective inverse of L' and $\mathbb{R}^3 \times [a,b] = \{(x,y,z,t) \in \mathbb{R}^4 | a \leq t \leq b\}$, $\mathbb{R}^3 \times \{c\} = \mathbb{R}^3 \times [c,c]$. Moreover if the number of components of L is m, then we say that L is strongly related to L'. Especially if each F_i is an annulus, then we say that L is cobordant to L' and denote it by $L \sim L'$.

Lemma 2.1. Let L and L_0 be two links such that $L \sim L_0$. If L_0 is self Δ -equivalent to a trivial link, then L is also self Δ -equivalent to a trivial link.

Proof. Since the Milnor invariant is a cobordism invariant by [1], we obtain the lemma by Corollary 1.5 in [9]. \Box

We may consider the self Δ -equivalence of links from a 4-dimensional point of view. For two links $L(\subset \mathbb{R}^3 \times \{a\})$, $L'(\subset \mathbb{R}^3 \times \{b\})$, L is self Δ -equivalent to L' if and only if there is a disjoint union $A = A_1 \cup \cdots \cup A_n$ of level-preserving annuli in $\mathbb{R}^3 \times [a,b]$ with $A \cap (\mathbb{R}^3 \times \{a\}) = L$, $A \cap (\mathbb{R}^3 \times \{b\}) = -L'$ which is locally flat except finite points, say Q_1, \ldots, Q_r , in the interior of A such that $(\partial N(Q_i : \mathbb{R}^3 \times [a,b]), \partial N(Q_i : A))$ is a Borromean rings for each i. We say that A is a union of level-preserving Δ -annuli between L and L' and denote $Q_1 \cup \cdots \cup Q_r$ by S(A). The following is an extention of Lemma 2.1.

Lemma 2.2. Suppose that L is strongly related to L_0 . If L_0 is self Δ -equivalent to a trivial link, then L is also self Δ -equivalent to a trivial link.

Proof. Assume that L and L_0 are contained in $\mathbb{R}^3 \times \{0\}$ and $\mathbb{R}^3 \times \{2\}$, respectively. Let $\mathcal{F} = F_1 \cup \cdots \cup F_n (\subset \mathbb{R}^3 \times [0,2])$ be a disjoint union of surfaces for L and L_0 to be strongly related. Moreover as L_0 is self Δ -equivalent to a trivial link, there is a union of level-preserving Δ -annuli $\mathcal{A} = A_1 \cup \cdots \cup A_n$ in $\mathbb{R}^3 \times [2,3]$ between L_0 and a trivial link $\mathcal{O}(\subset \mathbb{R}^3 \times \{3\})$. Let P_1, \ldots, P_r be the maximal points of \mathcal{F} and Q_1, \ldots, Q_s the points of $\mathcal{S}(\mathcal{A})$ and $R_1, \ldots, R_{r+s}, r+s$ points in $\mathbb{R}^3 \times \{4\}$. Now we take r+s level-preserving mutually disjoint arcs $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s$ in $\mathbb{R}^3 \times [0,4]$ such that $\partial \alpha_i = P_i \cup R_i$ and $\partial \beta_j = Q_j \cup R_{r+j}$ such that $\alpha_i \cap (\mathcal{F} \cup \mathcal{A}) = P_i, \beta_j \cap (\mathcal{F} \cup \mathcal{A}) = Q_j$. Then isotop $P_1 \cup \cdots \cup P_r \cup Q_1 \cup \cdots \cup Q_s$ to $R_1 \cup \cdots \cup R_{r+s}$ along $\cup_{i,j} (\alpha_i \cup \beta_j)$. As a result, we obtain a surface Σ in $\mathbb{R}^3 \times [0,4]$ such that $\mathcal{C}(=\Sigma \cap \mathbb{R}^3 \times [0,3])$ is a disjoint union of locally flat non-singular orientable surface of genus 0 with $\partial \mathcal{C} \cap \mathbb{R}^3 \times \{0\} = L$ and $\partial \mathcal{C} \cap \mathbb{R}^3 \times \{3\} = \{s$ Borromean rings $\} \cup \mathcal{O}'$ for a trivial link \mathcal{O}' .

By the similar discussion as that of proof of Lemma 1.17 in [5], we obtain a surface C_0 by deforming C suitably satisfying the following:

- (1) $L \sim \mathcal{L}$ for $\mathcal{L} = \mathcal{C}_0 \cap \mathbb{R}^3 \times \{1\}$.
- (2) $\mathcal{L}(\subset \mathbb{R}^3 \times \{1\})$ is self Δ -equivalent to $\mathcal{L}_0(=\mathcal{C} \cap \mathbb{R}^3 \times \{2\})$.
- (3) \mathcal{L}_0 is strongly related to a trivial link $\mathcal{O}_0(=\mathcal{C}_0 \cap \mathbb{R}^3 \times \{3\})$.

By condition (3), \mathcal{L}_0 is a ribbon link, and thus \mathcal{L}_0 is self Δ -equivalent to a trivial link by [6]. Hence L is self Δ -equivalent to a trivial link by conditions (1),(2) and Lemma 2.1.

3. Self Δ -equivalence of algebraically split links.

For the self Δ -equivalence of boundary links [8], the following is proved in [7].

Lemma 3.1. ([7, Theorem 1·1]) Any boundary link is self Δ -equivalent to a trivial link.

The singularity as illustrated in Figure 2(a) (resp. 2(b)) is called an arc of ribbon-type (resp. an arc of clasp-type). Let F be an orientable surface (or a union of disks) such that S(F), the set of singularities of F, does not have an arc of clasp-type. Assume that T(F), the set of triple points of F, is not empty. A point P of T(F) is called one of type I (resp. II) if the three points P^* , P'^* , P''^* of the pre-image of P are those as illustrated in Figure 3(a)(resp. 3(b)). The set of points of type I (resp. II) of T(F) is denoted by $T_{\rm I}(F)$ (resp. $T_{\rm II}(F)$). Then we have that $T(F) = T_{\rm I}(F) \cup T_{\rm II}(F)$. The following is shown in [2]. Here we give an alternative proof.

Figure 2

FIGURE 3

Lemma 3.2. ([2, Proposition 2.1]) An n-component link $\ell = K_1 \cup \cdots \cup K_n$ is an algebraically split link if and only if there is a union $\mathcal{F} = F_1 \cup \cdots \cup F_n$ of non-singular orientable surfaces in \mathbb{R}^3 with $\partial \mathcal{F} = \ell$, $\partial F_i = K_i$ such that $\mathcal{S}(\mathcal{F})$ consists of mutually disjoint simple arcs of ribbon-type.

Proof. If there is a surface $\mathcal{F} = F_1 \cup \cdots \cup F_n$ satisfying the above conditions, we easily see that ℓ is algebraically split.

Conversely, suppose that ℓ is algebraically split. Since $\operatorname{lk}(K_1,K_i)=0$ for $i\geq 2$, there is a non-singular orientable surface F_1 with $\partial F_1=K_1$ such that $F_1\cap(\ell-K_1)=\emptyset$. Next as $\operatorname{lk}(K_2,K_i)=0$ for $i\geq 3$, there is a non-singular orientable surface F_2 with $\partial F_2=K_2$ such that $F_2\cap(\ell-K_1-K_2)=\emptyset$. Since $F_1\cap K_2=\emptyset$, $F_1\cap F_2$ does not have an arc of clasp-type. If $F_1\cap F_2$ contains a loop, it can be easily transformed into an arc of ribbon-type by deforming F_1 slightly. Hence $F_1\cap F_2$ consists of mutually disjoint simple arcs of ribbon-type such that, for each arc α of $F_1\cap F_2$, the b-line α^* of the pre-image of α is contained in F_1^* , namely $\partial \alpha^* \subset K_1^*$, for $F_1\cap K_2=\emptyset$, where X^* means the pre-image of X.

By the same discussion as above, we obtain a non-singular orientable surface F_3 with $\partial F_3 = K_3$ such that $F_3 \cap (\ell - K_1 - K_2 - K_3) = \emptyset$ and $F_r \cap F_3$, if not empty for r = 1, 2, consists of mutually disjoint simple arcs of ribbon-type and the *b*-line α^* of the pre-image of α is contained in $(F_1 \cup F_2)^*$ for each α of $F_r \cap F_3$. Thus if $F_1 \cap F_2 \cap F_3$ is not empty, then there are three arcs, say α, β, γ , of ribbon-type such that $\alpha \subset F_1 \cap F_2, \beta \subset F_1 \cap F_3$ and $\gamma \subset F_2 \cap F_3$ and $\alpha \cap \beta \cap \gamma$ contains a point, say P. By the construction of F_1, F_2 and F_3, P is a triple point of type II and three points P^*, P'^* and P''^* are contained in F_1^*, F_2^* and F_3^* respectively (see Figure 4(a)).

Now deform $N(P:F_3)$ along an arc of $\alpha-P$ towards to a point of $\partial \alpha$ (see Figure 4(b)). As a result, we obtain a non-singular orientable surface F_3 by F_3 such that $T(F_1 \cup F_2 \cup F_3') = T(F_1 \cup F_2 \cup F_3) - \{P\}$. By doing the above, any two arcs of ribbon-type of $F_i \cap F_j$, $i, j = 1, 2, 3 (i \neq j)$ are mutually disjoint and simple.

By performing the above discussion successively, we obtain a surface $\mathcal{F} = F_1 \cup \cdots \cup F_n$ satisfying the conditions of Lemma 3.2.

Theorem 3.3. Let ℓ be an algebraically split link and $\mathcal{F} = F_1 \cup \cdots \cup F_n$ a surface in Lemma 3.2. If, for each arc α of ribbon-type of $F_i \cap F_j$ (i, j = 1, ..., n), $F_i - \alpha$ (or $F_j - \alpha$) is disconnected, then ℓ is self Δ -equivalent to a trivial link.

Figure 4

Proof. Let α be an arc of ribbon-type of $F_i \cap F_j$ such that $F_i - \alpha$ is disconnected. By performing the fission of ℓ along α , we obtain a link ℓ' . Namely $\ell' = \ell \oplus \partial N(\alpha : F_i)$, where \oplus means the homological addition. By performing the above fission to each α of $F_i \cap F_j$ for i, j = 1, ..., n, we obtain a link $L(=\ell \oplus (\cup_{\alpha} \partial N(\alpha : F_i)))$ and a union $\tilde{\mathcal{F}} = \bigcup_{i=1}^n \bigcup_{j=1}^{m_i} F_{ij}$ of mutually disjoint non-singular orientable surfaces with $\partial \tilde{\mathcal{F}} = L$ from ℓ and \mathcal{F} , respectively.

By the construction of $\tilde{\mathcal{F}}$, we easily see that ℓ is strongly related to L and that L is a boundary link. Hence L is self Δ -equivalent to a trivial link by Lemma 3.1, and thus ℓ is self Δ -equivalent to a trivial link by Lemma 2.2.

A link $\ell = K_1 \cup \cdots \cup K_n$ is called a weakly Δ -split link if there is a union $\mathcal{D} = D_1 \cup \cdots \cup D_n$ of claspless disks in \mathbb{R}^3 with $\partial \mathcal{D} = \ell$, $\partial D_i = K_i$. Especially if $D_i \cap D_j = \emptyset$ for each $i, j (i \neq j), \ell$ is called a Δ -split link. Since free self Δ -equivalence implies self Δ -equivalence, we obtain the following by Theorem 1.4 in [4].

Lemma 3.4. Any Δ -split link is self Δ -equivalent to a trivial link.

Suppose that ℓ is a weakly Δ -split link and \mathcal{D} the above. Then any point of $T(\mathcal{D})$ is contained in one of $S(D_i), S(D_i) \cap D_j$ and $D_i \cap D_j \cap D_h$ for distinct integers i, j and h.

Lemma 3.5. A link ℓ is a weakly Δ -split link if and only if it is an algebraically split link.

Proof. Suppose that ℓ is a weakly Δ -split link. Then there is a union $\mathcal{D} = \cup_i D_i$, $\partial \mathcal{D} = \ell$ of claspless disks in \mathbb{R}^3 , namely each of $D_i \cap D_j$ consists of arcs of ribbon-type or loops for $i \neq j$. Hence $lk(K_i, K_j) = I(D_i, K_j) = 0$ for $K_i = \partial D_i$, where I(x, y) means the intersection number of x and y. Therefore ℓ is algebraically split.

Conversely if ℓ is algebraically split, ℓ is obtained by a fusion of a trivial link \mathcal{O} and several copies of the Borromeans rings \mathbf{B} which are split from \mathcal{O} by Proposition 1.1. For each of \mathbf{B} , we span a union of claspless disks as illustrated in Figure 3 (a). Hence ℓ is a weakly Δ -split link.

Lemma 3.6. A link ℓ is self Δ -equivalent to a trivial link if and only if there is a union $\mathcal{D} = \cup_i D_i$ of claspless disks with $\partial \mathcal{D} = \ell$ such that $T_{\mathrm{I}}(\mathcal{D}) = \cup_i T_{\mathrm{I}}(D_i)$ and $T_{\mathrm{II}}(\mathcal{D}) = \emptyset$.

Proof. If ℓ is self Δ -equivalent to a trivial link, then ℓ is obtained by a fusion of a trivial link \mathcal{O} and several copies of the Borromean rings satisfying that, for each Borromean rings B, there are 3 bands b_1, b_2 and b_3 of fusion of B and \mathcal{O} such that $b_i \cap B \neq \emptyset$ and $b_i \cap O \neq \emptyset$ for i = 1, 2, 3 and some component O of \mathcal{O} . Hence, by spanning the claspless disks as illustrated in Figure 3(a) to each Borromean rings, we obtain the necessity.

Conversely, suppose that there is a union $\mathcal{D} = \cup_i D_i$ satisfying the conditions of Lemma 3.6. If $D_i \cap D_j = \emptyset$ for each $i, j (i \neq j), \ell$ is a Δ -split link and so ℓ is self Δ -equivalent to a trivial link by Lemma 3.4. Next suppose that $D_i \cap D_j \neq \emptyset$ for $i \neq j$. Let α be an arc of ribbon-type of $D_i \cap D_j$. Then α is simple (i.e. no self intersections) and $\alpha \cap T(\mathcal{D}) = \emptyset$ because $T_I(\mathcal{D}) = \cup_i T_I(D_i)$ and $T_{II}(D) = \emptyset$. Assume that the b-line of the pre-image of α is contained in the pre-image of D_i . Now perform the fission along each such an arc α on D_i , we may obtain a link L and a union of claspless disks $\mathcal{E} = \cup_i E_i$ from ℓ and \mathcal{D} , respectively such that \mathcal{E} is a disjoint union, namely $\mathcal{E} = cl(\mathcal{D} - \cup_{\alpha} N(\alpha : D_i))$ and $L = \partial \mathcal{E}$. Hence ℓ is strongly related to L. Since \mathcal{E} is a disjoint union of claspless disks, L is a Δ -split link. Therefore ℓ is self Δ -equivalent to a trivial link by Lemmas 2.2 and 3.4.

Theorem 3.7. If ℓ is an algebraically split link and $\mathcal{D} = \cup_i D_i$ is a union of claspless disks with $\partial \mathcal{D} = \ell$ such that $T_{\mathrm{I}}(\mathcal{D}) = \cup_i T_{\mathrm{I}}(D_i)$, then ℓ is self Δ -equivalent to a trivial link.

Proof. Let f be an immersion of \mathcal{D}^* into \mathbb{R}^3 . For each point P of $T_{\mathrm{II}}(\mathcal{D})$, P^* is the point of $f^{-1}(P)$ as illustrated in Figure 3(b). Then $\mathcal{E} = cl(\mathcal{D} - \cup_P f(N(P^* : \mathcal{D}^*)))$ is a union of perforated claspless disks with $\partial \mathcal{E} = \ell \circ \mathcal{O}$, where $\mathcal{O}(=\partial(\cup_P f(N(P^* : \mathcal{D}^*))))$ is a trivial link and \circ means that ℓ is split from \mathcal{O} .

By the assumption of Theorem 3.7 and the construction of \mathcal{E} , $T_{\mathrm{I}}(\mathcal{E}) = T_{\mathrm{I}}(\mathcal{D}) = \cup_{i} T_{\mathrm{I}}(D_{i}) = \cup_{i} T_{\mathrm{I}}(E_{i})$ and $T_{\mathrm{II}}(\mathcal{E}) = \emptyset$, where $E_{i} = cl(D_{i} - \cup_{P} f(N(P^{*}: \mathcal{D}^{*})))$. Since $T_{\mathrm{II}}(\mathcal{E}) = \emptyset$, each *i*-line of $f^{-1}(\mathcal{S}(\mathcal{E}))$ is simple and any two *i*-lines do not intersect to each other on $\mathcal{E}^{*}(= f^{-1}(\mathcal{E}))$. Hence there is a disjoint union $\beta^{*} = \cup_{j} \beta_{j}^{*}$ of simple arcs on \mathcal{E}^{*} such that β_{j}^{*} connects a point of ℓ^{*} and one of O_{j}^{*} such that $\beta_{j}^{*} \cap \{i\text{-lines of } f^{-1}(\mathcal{S}(\mathcal{E}))\} = \emptyset$, where $\mathcal{O} = \cup_{j} O_{j}$.

Let $\mathcal{F} = cl(\mathcal{E} - f(N(\beta^* : \mathcal{E}^*))) (= F_1 \cup \cdots \cup F_n)$. Then \mathcal{F} is a union of claspless disks such that $T_{\mathrm{I}}(\mathcal{F}) = T_{\mathrm{I}}(\mathcal{E}) = \cup_i T_{\mathrm{I}}(E_i) = \cup_i T_{\mathrm{I}}(F_i)$ and $T_{\mathrm{II}}(\mathcal{F}) = \emptyset$ by the choice of β . Hence $L(= \partial \mathcal{F})$ is self Δ -equivalent to a trivial link by Lemma 3.6. Moreover as L is obtained by a fusion of $\ell \circ \mathcal{O}$, ℓ is cobordant to L. Therefore ℓ is self Δ -equivalent to a trivial link by Lemma 2.1. \square

References

- [1] A.J. Casson, Link cobordism and Milnor invariant, Bull. London Math. Soc., 7 (1975), 39-40.
- [2] T. Kadokami and A. Yasuhara, Proper links, algebraically split links and Arf invariant, J.Math. Soc. Japan, 52 (2000), 591–608.
- [3] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284 (1989), 75-89.
- [4] Y. Nakanishi, T. Shibuya and T. Tsukamoto, Free self delta-triviality of delta-split links, J. Knot Theory Ramifications, 18 (2009), 1539-1549.
- [5] T. Shibuya, On the cobordism of links in 3-space, Kobe J. Math., 1(1984),119-131.
- [6] T. Shibuya, Self Δ-equivalence of ribbon links, Osaka J. Math., 33 (1996), 751–760.
- [7] T. Shibuya and A. Yasuhara, Boundary links are self delta-equivalent to trivial links, Math. Proc. Cambridge Philos. Soc., 143 (2007), 449–458.
- [8] N. Smythe, Boundary links, Topology Seminar, Wisconsin, 1965, Ann. of Math. Studies, 60,69-72, Princeton Univ. Press.
- [9] A. Yasuhara, Self delta-equivalence for links whose Milnor's isotopy invariants vanish, Trans. Amer. Math. Soc., **361** (2009), 4721–4749.

Tetsuo SHIBUYA

Department of Mathematics Osaka Institute of Technology Omiya 5-6-1, Asahi Osaka 535-8585, Japan

E-mail: shibuya@ge.oit.ac.jp

Tatsuya TSUKAMOTO Department of Mathematics Osaka Institute of Technology Omiya 5-6-1, Asahi

Osaka 535-8585, Japan

E-mail: tsukamoto@ge.oit.ac.jp