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Abstract
It is known that any algebraically split link is A-equivalent to a trivial link, where a link is
algebraically split if the linking number of each 2-component sublink of it vanishes. However, it
is also known that there is an algebraicaly split link which is not self A-equivalent to a trivial

link. In this paper, we give two sufficient conditions for an algebraically split link to be self
A-equivalent to a trivial link.
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1. INTRODUCTION

Throughout the paper, links are tame and oriented in an oriented 3-space R? and they are
considered up to ambient isotopy of R3.

A local move on links as illustrated in Figure 1 is called a A-mowve. If the three strands in
the figure belong to the same component, then it is called a self A-move. If a link ¢ can be
transformed into a trivial link by a finite sequence of A-moves (resp. self A-moves), then we
say that ¢ is A-equivalent (resp. self A-equivalent) to a trivial link.

™~ \
AR
L\ T
\ ~
FIGURE 1

An n-component link L = K U---U K, is said to be algebraically split if the linking number,
denoted by 1k(K;, K;), is zero for each ¢ and j (i # j). Then the following is shown in [3].

Proposition 1.1. A link L is A-equivalent to a trivial link if and only if L is algebraically split.

However, in general, algebraically split links are not self A-equivalent to trivial links. For
example, the Whitehead link and the Borromean rings are algebraically split, but not self A-
equivalent to trivial links. In this paper, we give two sufficient conditions for an algebraically
split link to be self A-equivalent to a trivial link (Theorem 3.3 and Theorem 3.7).

2. SELF A-EQUIVALENCE OF STRONGLY RELATED LINKS.

In this section, we show two lemmas which we use to prove the theorems.

For two links L(C R3x {a}) and L'(C R3x {b}), L is said to be related to L' if there is a disjoint
union F = Fy U+ U F,,(C R3 x [a, b]) of locally flat non-singular orientable surfaces of genus 0
such that FN(R3 x {a}) = L, FN(R3 x {b}) = —L' and F;N(R® x {a}) # 0, F;N(R® x {b}) # 0
for each i, where —L’ is the reflective inverse of L' and R® x [a,b] = {(z,y, z,t) € Rt|a <t < b},
R? x {c} = R3 x [¢, ¢]. Moreover if the number of components of L is m, then we say that L is
strongly related to L'. Especially if each F; is an annulus, then we say that L is cobordant to L'
and denote it by L ~ L.

Lemma 2.1. Let L and Lo be two links such that L ~ Lg. If Lg is self A-equivalent to a trivial
link, then L is also self A-equivalent to a trivial link.

Proof. Since the Milnor invariant is a cobordism invariant by [1], we obtain the lemma by
Corollary 1.5 in [9)]. O
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We may consider the self A-equivalence of links from a 4-dimensional point of view. For two
links L(C R3 x {a}), L'(C R3 x {b}), L is self A-equivalent to L' if and only if there is a disjoint
union A = A U --- U A, of level-preserving annuli in R3 x [a,b] with AN (R3 x {a}) = L,
AN (R3 x {b}) = —L' which is localy flat except finite points, say Q1, ..., Q,, in the interior of A
such that (ON(Q; : R3 x [a,b]),ON(Q; : A)) is a Borromean rings for each i. We say that A is
a union of level-preserving A-annuli between L and L' and denote Q1 U ---U @, by S(A). The
following is an extention of Lemma 2.1.

Lemma 2.2. Suppose that L is strongly related to Lq. If Lo is self A-equivalent to a trivial
link, then L is also self A-equivalent to a trivial link.

Proof. Assume that L and Lo are contained in R? x {0} and R3 x {2}, respectively. Let F =
FyU---UF,(CR3x[0,2]) be a disjoint union of surfaces for L and Lg to be strongly related.
Moreover as Ly is self A-equivalent to a trivial link, there is a union of level-preserving A-annuli
A= A1U---UA, in R3 x [2,3] between Lo and a trivial link O(C R? x {3}). Let Py, ..., P, be the
maximal points of F and Q, ..., Qs the points of S(A) and Ry, ..., R4, + s points in R3 x {4}.
Now we take 7 + s level-preserving mutually disjoint arcs aq, ..., o, 1, ..., Bs in R3 x [0, 4] such
that doy = P, U R; and 03; = Q; U Ry4; such that oy N (FUA) = P, 6, N (FUA) = Q;.
Then isotop PLU---UP. UQ1U---UQs to Ry U---U R, along U; j(a; U ). As a result,
we obtain a surface X in R3 x [0,4] such that C(= £ NR3 x [0,3]) is a disjoint union of locally
flat non-singular orientable surface of genus 0 with 9C NR? x {0} = L and 9C N R3 x {3} = {s
Borromean rings} U O’ for a trivial link O'.

By the similar discussion as that of proof of Lemma 1.17 in [5], we obtain a surface Cy by
deforming C suitably satisfying the following:

(1) L~ L for £L=CyNR? x {1}.
(2) L(C R3 x {1}) is self A-equivalent to Lo(=C NR3 x {2}).
(3) Lo is strongly related to a trivial link Op(= Co NR3 x {3}).

By condition (3), Lo is a ribbon link, and thus Ly is self A-equivalent to a trivial link by [6].
Hence L is self A-equivalent to a trivial link by conditions (1),(2) and Lemma 2.1. O

3. SELF A-EQUIVALENCE OF ALGEBRAICALLY SPLIT LINKS.

For the self A-equivalence of boundary links [8], the following is proved in [7].
Lemma 3.1. ([7, Theorem 1-1]) Any boundary link is self A-equivalent to a trivial link.

The singularity as illustrated in Figure 2(a) (resp. 2(b)) is called an arc of ribbon-type (resp.
an arc of clasp-type). Let F' be an orientable surface (or a union of disks) such that S(F'), the
set of singularities of F', does not have an arc of clasp-type. Assume that T'(F'), the set of triple
points of F', is not empty. A point P of T'(F) is called one of type I (resp. II) if the three points
P*, P, P"* of the pre-image of P are those as illustrated in Figure 3(a)(resp. 3(b)). The set
of points of type I (resp. II) of T'(F') is denoted by Ti(F') (resp. Ti1(F')). Then we have that
T(F)=Ti(F)UTy(F). The following is shown in [2]. Here we give an alternative proof.
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FIGURE 3

Lemma 3.2. (]2, Proposition 2.1]) An n-component link { = K1 U ---U K,, is an algebraically
split link if and only if there is a union F = F1U---UF}, of non-singular orientable surfaces in R>
with OF = {, OF; = K; such that S(F) consists of mutually disjoint simple arcs of ribbon-type.

Proof. If there is a surface F = F} U --- U F}, satisfying the above conditions, we easily see that
{ is algebraically split.

Conversely, suppose that ¢ is algebraically split. Since 1k(K7, K;) = 0 for i > 2, there is
a non-singular orientable surface Fy with 0F) = K; such that Fy N (¢ — K1) = (. Next as
Ik(Ky, K;) = 0 for ¢ > 3, there is a non-singular orientable surface Fy with 0Fy = Ks such that
N — Ky — Ky) = 0. Since F; N Ky = 0, F; N Fy does not have an arc of clasp-type. If
Fy N F5 contains a loop, it can be easily transformed into an arc of ribbon-type by deforming
I slightly. Hence Fy N Fy consists of mutually disjoint simple arcs of ribbon-type such that, for
each arc a of F N Fy, the b-line a* of the pre-image of « is contained in F}', namely da* C K7,
for F7 N Ky = (), where X* means the pre-image of X.

By the same discussion as above, we obtain a non-singular orientable surface F3 with 0F3 = K3
such that FsN (¢ — K1 — Ky — K3) = () and F,. N F3, if not empty for r = 1,2, consists of mutually
disjoint simple arcs of ribbon-type and the b-line a® of the pre-image of « is contained in
(F1 U Fy)* for each a of F,, N F3. Thus if F} N F» N F3 is not empty, then there are three arcs,
say «, (3,7, of ribbon-type such that « C Fi N Fy, 6 C Fi1NF3and v C FsNF3 and anN Ny
contains a point, say P. By the construction of Fi, F» and F3, P is a triple point of type II and
three points P*, P™ and P"* are contained in F}, Fy and F3 respectively (see Figure 4(a)).
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Now deform N (P : F3) along an arc of o — P towards to a point of da (see Figure 4(b)). As a
result, we obtain a non-singular orientable surface Iy by F3 such that T(Fy UFy U Fy) = T(Fy U
F> U F3) — {P}. By doing the above, any two arcs of ribbon-type of F; N Fj,i,j = 1,2,3(i # j)
are mutually disjoint and simple.

By performing the above discussion successively, we obtain a surface F = F; U --- U F,
satisfying the conditions of Lemma 3.2. O
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Theorem 3.3. Let ¢ be an algebraically split link and F = FyU---UF, a surface in Lemma 3.2.
If, for each arc o of ribbon-type of FyNF; (i,5 = 1,...,n), F; —a (or Fj — a) is disconnected,
then ¢ is self A-equivalent to a trivial link.

Proof. Let a be an arc of ribbon-type of F; N F}; such that F; —a is disconnected. By performing
the fission of ¢ along «, we obtain a link ¢/. Namely ¢ = ¢ & ON(« : F;), where & means the
homological addition. By performing the above fission to each a of F; N F}; for i, j = 1,...,n,
we obtain a link L(= ¢ @® (U,ON(a : F};))) and a union F = U, Ul Fy; of mutually disjoint

non-singular orientable surfaces with dF = L from ¢ and F, respectively.

By the construction of F, we easily see that ¢ is strongly related to L and that L is a boundary
link. Hence L is self A-equivalent to a trivial link by Lemma 3.1, and thus ¢ is self A-equivalent
to a trivial link by Lemma 2.2. U

Alink £ =Ky U---UK, is called a weakly A-split link if there is a union D = D1 U---U D,
of claspless disks in R with 0D = ¢, dD; = K;. Especially if D; N D; = () for each 4,5(i # j),¢
is called a A-split link. Since free self A-equivalence implies self A-equivalence, we obtain the
following by Theorem 1.4 in [4].

Lemma 3.4. Any A-split link is self A-equivalent to a trivial link.

Suppose that ¢ is a weakly A-split link and D the above. Then any point of 7'(D) is contained
in one of S(D;),S(D;) N D; and D; N D;j N Dy, for distinct integers ¢, j and h.
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Lemma 3.5. A link { is a weakly A-split link if and only if it is an algebraically split link.

Proof. Suppose that ¢ is a weakly A-split link. Then there is a union D = U;D;,0D = { of
claspless disks in R?, namely each of D; N D; consists of arcs of ribbon-type or loops for i # j.
Hence 1k(K;, K;) = I(D;, Kj) = 0 for K; = 0D;, where I(z,y) means the intersection number
of z and y. Therefore /¢ is algebraically split.

Conversely if ¢ is algebraically split, ¢ is obtained by a fusion of a trivial link O and several
copies of the Borromeans rings B which are split from O by Proposition 1.1. For each of B,
we span a union of claspless disks as illustrated in Figure 3 (a). Hence /¢ is a weakly A-split
link. O

Lemma 3.6. A link ( is self A-equivalent to a trivial link if and only if there is a union D = U; D;
of claspless disks with D = { such that Ty(D) = U;T1(D;) and T (D) = 0.

Proof. 1If £ is self A-equivalent to a trivial link, then £ is obtained by a fusion of a trivial link
O and several copies of the Borromean rings satisfying that, for each Borromean rings B, there
are 3 bands by, by and b3 of fusion of B and O such that b; "B # 0 and b; N O # () for i = 1,2,3
and some component O of O. Hence, by spanning the claspless disks as illustrated in Figure
3(a) to each Borromean rings, we obtain the necessity.

Conversely, suppose that there is a union D = U; D; satisfying the conditions of Lemma 3.6.
If D, N D; = 0 for each i,j(i # j),¢ is a A-split link and so ¢ is self A-equivalent to a trivial
link by Lemma 3.4. Next suppose that D; N D; # () for i # j. Let o be an arc of ribbon-type of
D;NDj. Then « is simple (i.e. no self intersections) and aNT'(D) = () because 17(D) = U;T1(D;)
and Ty(D) = () . Assume that the b-line of the pre-image of « is contained in the pre-image
of D;. Now perform the fission along each such an arc a on D;, we may obtain a link L and
a union of claspless disks & = U; E; from ¢ and D, respectively such that £ is a disjoint union,
namely £ = cl(D — U,N(a : D;)) and L = 9E. Hence / is strongly related to L. Since € is a
disjoint union of claspless disks, L is a A-split link. Therefore £ is self A-equivalent to a trivial
link by Lemmas 2.2 and 3.4. U

Theorem 3.7. If { is an algebraically split link and D = U; D; is a union of claspless disks with
0D = ¢ such that T1(D) = U;T1(D;), then ¢ is self A-equivalent to a trivial link.

Proof. Let f be an immersion of D* into R®. For each point P of Ti;(D), P* is the point of
f~Y(P) asillustrated in Figure 3(b). Then & = cl(D—Upf(N(P* : D*))) is a union of perforated
claspless disks with 0€ = £ o O, where O(= d(Upf(N(P* : D*)))) is a trivial link and o means
that ¢ is split from O.

By the assumption of Theorem 3.7 and the construction of £, T1(€) = T1(D) = U;T1(D;) =
U, T1(E;) and T11(€) = (), where E; = cl(D; —Upf(N(P* : D*))). Since T11(€) = (), each i-line of
f7H(S(&)) is simple and any two i-lines do not intersect to each other on £*(= f~(&)). Hence
there is a disjoint union g* = U; ﬁ;-‘ of simple arcs on £* such that ﬁj connects a point of £* and
one of O such that 3 N {i-lines of f~1(S(£))} = 0, where O = U;0;.

Let F = cl(E — f(N(G* : £%)))(= F1U---UF,). Then F is a union of claspless disks such
that T1(F) = T1(€) = U;T1(E;) = U;T1(F;) and T11(F) = 0 by the choice of 5. Hence L(= 9F)
is self A-equivalent to a trivial link by Lemma 3.6. Moreover as L is obtained by a fusion of
{0 O, {is cobordant to L. Therefore ¢ is self A-equivalent to a trivial link by Lemma 2.1. [
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